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1. LINEAR ALGEBRA

QUESTION 1.1. What is the characteristic polynomial of A =

(
a b
c d

)
?

QUESTION 1.2 (FALL 2024). Let F3 be the field with 3 elements. and let

A =

0 0 1
1 2 2
2 0 2

 ∈ M3(F3).

(1) Calculate the characteristic polynomial of A.
(2) Find the eigenvalues and eigenspaces (in F3

3) of A.
(3) What is the minimal polynomial of A? Justify your answer.
(4) Is A diagonalizable over F3? Over an algebraic closure of F3? Justify your answer.

QUESTION 1.3 (SPRING 2021). Let V be a finite-dimensional vector space over some
field K, let T ∈ EndK(V ) be a linear operator on V , and let W ⊆ V be a subspace such
that T (W ) ⊆ W . Let m,m1, and m2 denote the minimal polynomials of T viewed as an
operator on V , W , and V/W (why does T induce a linear operator on V/W ?), respectively.
Show:

(1) m divides m1m2.
(2) If m1 and m2 are relatively prime, then m = m1m2.
(3) Give an example with m ̸= m1m2.

QUESTION 1.4 (FALL 2022). Let V be a finite dimensional vector space over a field K,
and let T : V → V be a linear opeartor on V . Consider a family of subspaces Wi ⊆ V (for
i ∈ I) such that T (Wi) ⊆ Wi and denote Ti := T |Wi

: Wi → Wi. Let m,mi denote degree of
minimal polynomials of T and Ti respectively. Show that

(1) mi divides m.
(2) If V =

∑
i∈I Wi, then m is the least common multiple of mi’s.

QUESTION 1.5 (FALL 2021). Let V be a finite-dimensional vector space over the field R
with dimR V ≥ 3. Let T : V → V be a linear operator. Show that there exists a nonzero
proper subspace W of V such that T (W ) ⊆ W .

QUESTION 1.6. Recall that the Cayley–Hamilton Theorem holds for matrices in Mn(R),
the ring of n × n matrices over a commutative ring R. Use this to show that AB = In
implies BA = In for A,BMn(R), and where In is the multiplicative identity of Mn(R).
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2. GROUP THEORY

QUESTION 2.1. Let Q be the group of rational numbers and let Z be the subgroup of
integers. Let G be the group {e2πiθ | θ ∈ Q} under multiplication. Show that

Q/Z ∼= G.

QUESTION 2.2. Let Aut(G) denote the group of automorphisms of a group G. For g ∈ G,
we denote

αg : G → G, x 7→ gxg−1.

Show that the set Inn(G) := {αg | g ∈ G} forms a normal subgroup of Aut(G), called the
group of inner automorphisms of G. The quotient Out(G) = Aut(G)/Inn(G) is called the
group of outer automorphisms of G.

QUESTION 2.3. Let γ = (1 2 . . . n) ∈ Sn be an n-cycle. Show that the conjugacy class of
γ in Sn has cardinality (n− 1)!. Moreover, the centralizer of γ is C(γ) = ⟨γ⟩.

QUESTION 2.4. Let G be a group.
(1) If H,K are subgroups of finite index, then H ∩K has finite index in G.

QUESTION 2.5. Let p be the smallest prime dividing the order of a group G. Show that
any subgroup of index p in G is normal.

QUESTION 2.6. Let D4 = ⟨r, s | r4 = s2 = 1, sr = r−1s⟩ be the order 8 dihedral group and
let Q8 = ⟨i, j | i4 = j2i2 = j−1iji = 1⟩ be the group of quaternions.

(1) Show that D4 is not isomorphic to Q8.
(2) Show that any non-abelain group of order 8 is isomorphic to one of D4 or Q8.
(3) Classify abelian groups of order 8?

QUESTION 2.7. Let Sn be the symmetric group on n letters and G be an abelian subgroup
of Sn that acts transitively on set {1, 2, . . . , n}.

(1) Prove that the order of the group G is n.
(2) Give an example of an abelian subgroup G of Sn for some n such that G acts tran-

sitively on {1, 2, . . . , n} and is not cyclic.

QUESTION 2.8. An abelian group A, written additively, is called divisible if for every
non-zero integer n ∈ Z, and a ∈ A, there is a b ∈ A such that a = nb (“b = a/n”). A is
torsion if every a ∈ A has a finite order. Now, let A = (Q,+). Prove:

(1) If B is any nonzero subgroup of A, then AB is both divisible and torsion.
(2) A has no proper subgroups of finite index.

QUESTION 2.9. Let Fn denote the free group on n generators. Show that the abelianiza-
tion of Fn := Fn/[Fn, Fn] is isomormorphic to Zn. Moreover, show that Fn

∼= Fm if and
only if n = m.

QUESTION 2.10.
(1) Give an example of an infinite abelian group that is also torsion.
(2) Show that an ininite abelian torsion group cannot be finitely generated.
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(3) Give an example of a torsion abelian group A and a non-zero subgroup B of A
such that A/B ∼= A.

QUESTION 2.11 (CLASS EQUATION). Let G be a finite group with center C. For an ele-
ment g ∈ G, denote C(g) for the centralizer of g in G. Show that

|G| = |C|+
∑

|G/C(g)|,

where the sum runs over representatives g ̸∈ C of conjugacy classes.

QUESTION 2.12. Let G be a group of order p3, where p is prime. Determine all possibili-
ties for the number of conjugacy classes in G and their sizes.

2.1. Sylow theorems.

THEOREM 2.13 (SYLOW THEOREMS). Let G be a finite group of order n and let p be a prime
dividing n. Then,

(1) p-Sylow groups exists.
(2) Any two p-Sylow subgroups are conjugates.
(3) Let pe||n, and let mp is the number of p-Sylow subgroups. Then

mp|n/pe and mp ≡ 1 mod p.

QUESTION 2.14 (FALL 2023). Let G be a finite group acting transitively on a set X .
(1) Suppose |G| = 65. If g has order 5, and g fixes one element of X , then g fixes every

element of X . (Use Sylow theorems)
(2) Show that (1) is false when |G| = 60. There is an action of the alternating group A5

on a set X with |X| = 6 so that every 5-cycle in A5 has a fixed point in X but no
5-cycle fixes every x ∈ X .

QUESTION 2.15 (SPRING 2013). Let G be a group of order p3q for primes p, q. Show that
G is not simple.

Proof. Let np, nq be the number of p, q-Sylow subgroups of G. By Sylow’s theorem, np|q
and nq|p3. Moreover, np ≡ 1 mod p and nq ≡ 1 mod q. If np = 1, then we are done. If
not, np = q and the first equation implies q > p. Let H be a subgroup of G of order p2

(show that this exists) and let K be a subgroup of order q in G. Then, the subsgroup HK
is normal since its index is p, the smallest prime dividing G. □

2.2. Fundamental theorem of abelian groups.

THEOREM 2.16. Let G be a finitely generated abelian group. Then,

G = Zr ×
(

Z
n1Z

× · · · × Z
nsZ

)
,

where
(1) r ≥ 0.
(2) ni > 1 for all i, and ni|ni−1 for all 2 ≤ i ≤ s.

Moreover, the above expression satisfying (1) and (2) is unique.
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DEFINITION 2.17. The (unique) integer r in the above theorem is called the rank (or Betti
number) of G. The factors n1, . . . , ns are called invariant factors of G. The above decompo-
sition is called invariant factor decomposition.

QUESTION 2.18. If n is square-free (product of distinct primes), then any abelian group
of order n is cyclic.

QUESTION 2.19. Classify all abelian groups of order 36.

QUESTION 2.20. Let G be an abelian group of order n = pe11 · · · pekk . Let Pk denote the
pk-Sylow subgroup. Show that

G = P1 × · · · × Pk,

and for each Pi, there exists invariant factors pβj,i

i such that

Pi =
Z

p
β1,i

i Z
× · · · × Z

p
βt,i

i Z
.

The divisors pβj,i

i are called elementary divisors of G and the above decomposition is called
the elementary divisor decomposition.

QUESTION 2.21. Show that the number of abelian groups of order pn is P (n), the number
of partitions of n.

2.3. Nilpotent and solvable groups. For a group G, let Z(G) denote its center.

DEFINITION 2.22. Let G be a group. Define Z0(G) = 1 and

Zi(G)/Zi−1(G) = Z(G/Zi−1(G)), for i ≥ 1.

We have the upper central series

Z0(G) ≤ Z1(G) ≤ Z2(G) ≤ · · · ≤ G.

The group G is called nilpotent if Zn(G) = G for some n ≥ 1. The smallest such n is called
the nilpotency class of G.

Examples.
(1) A non-trivial group has nilpotency class 1 if and only if it is abelian.
(2) Let G = S3, then Zi(G) = 1 for all i ≥ 0. Hence, S3 is not nilpotent.

QUESTION 2.23. Show that D4 and Q8 are nilpotent of class 2. Moreover, show that D2n

is nilpotent of class n− 1.

DEFINITION 2.24. Let G be a group. Define G0 = G, and

Gi = [G,Gi−1], for i ≥ 1.

We have the lower central series

G0 ⊇ G1 ⊇ · · · .
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QUESTION 2.25. A group G is nilpotent if and only if there is an n ≥ 1 such that Gn = 1.
Moreover, if G is of nilpotency class n, then

Zi(G) ≤ Gn−i−1 ≤ Zi+1(G).

THEOREM 2.26. Let G be a finite group, and let p1, . . . , pk be distinct prime divisors of its order.
Let Pk be the pk-Sylow subgroup of G. Then the following are equivalent:

(1) G is nilpotent.
(2) For a proper subgroup H < G, H is a proper subgroup of its normalizer N(H) in G.
(3) Every Sylow subgroup is normal in G.
(4) G ∼= P1 × · · · × Pk.

DEFINITION 2.27. A subgroup C of G is said to be characteristic if C is fixed by every
automorphism of G.

EXAMPLE 2.28. A normal p-Sylow subgroup is characteristic.

QUESTION 2.29 ([DF04], P. 198, EX.1). Show that the groups Zi(G) are characteristic.

QUESTION 2.30 ([DF04], P. 198, EX.6). If G/Z(G) is nilpotent, then G is nilpotent.

QUESTION 2.31 ([DF04], P. 198, EX.4). Prove that a maximal subgroup of a finite nilpo-
tent group has prime index.

QUESTION 2.32 ([DF04],P. 198, EX. 9, 10). Prove that a finite group G is nilpotent if and
only if whenever a, b ∈ G with coprime orders, then ab = ba. Using this, show that Dn

(the dihedral group of order 2n) is nilpotent if and only if n is a power of 2.

DEFINITION 2.33. A group G is solvable if there is a series

1 < H1 < · · · < Hn−1 < Hn = G

such that Hi−1 is normal in Hi, and Hi/Hi−1 is abelian.

EXAMPLE 2.34. S3 is solvable: 1 < ⟨(1 2 3)⟩ < S3.

Define the derived series of G as follows: Let G(0) = G, and

G(i) = [G(i−1), G(i−1)].

THEOREM 2.35. A group G is solvable if and only if G(n) = 1 for some n ≥ 1. The smallest such
n is called the solvable length of G.

QUESTION 2.36.
(1) Subgroups of solvable groups are solvable.
(2) Homomorphic image of a solvable group is solvable.
(3) If N is a normal subgroup of G, and both N and G/N is solvable, then G is solvable.

QUESTION 2.37 ([DF04], P. 213, EX. 5). Let G be a solvable group of order pm, where p
is a prime not dividing m, and let P be a p-Sylow subgroup of G. If the normalizer NG(P )
of P is equal to P , then prove that G has a normal subgroup of order m. Where was the
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solvability of G needed in the proof? (This result is true for nonsolvable groups as well -
it is a special case of Burnside’s N/C-Theorem.)

DEFINITION 2.38. An elementary abelian p-group is a group isomorphic to a finite di-
rected sum of Z/pZ.

QUESTION 2.39 ([DF04], P. 200, EX. 36). Let p be a prime, let V be a nonzero finite
dimensional vector space over the field of p elements and let φ be an element of GL(V ) of
order a power of p (i.e. V is a nontrivial elementary abelian p-group and φ is an automor-
phism of V of p-power order). Prove that there is some nonzero element v ∈ V such that
φ(v) = v, i.e. φ has a nonzero fixed point on V .

2.4. Some extra questions.

QUESTION 2.40. Let G be a group of order pqr where p, q and r are primes with p < q < r.
Prove that a r-Sylow subgroup of G is normal.

QUESTION 2.41 (FALL 2015). Let G be a finite group with center Z(G). Let H ≤ G be a
subgroup with centralizer CG(H) = {g ∈ G | ghg−1 = h for all h ∈ H}.

(1) If p does not divide the order of G/Z(G), the p does not divide the order of any
conjugacy class in G.

(2) If p does not divide the size of any conjugacy class C, then CG(P ) ∩ C ̸= ∅ for any
Sylow subgroup P of G.

(3) Using (2), prove the converse of (1).

QUESTION 2.42 (FALL 2017). Let G be a finitely generated group and let n be a positive
integer. Prove:

(1) There are at most finitely many subgroups H of G such that [G : H] = n.
(2) For every subgroup H of G with finite index, there is a characteristic subgroup C

of G contained in H with finite index.
(Hint. Since G is finitely generated, there are only finitely many group homomorphisms
from G to the symmetric group Sn).

QUESTION 2.43 (FALL 2018). For any group G, define Φ(G), called called the Frattini
subgroup of G, to be the intersection of all maximal subgroups of G. Prove that

(1) Φ(G) is a characteristic subgroup of G.
(2) If G is nilpotent, then all maximal subgroups of G are normal and have prime

index. Conclude that the derived subgroup [G,G] is contained in Φ(G).
(3) If G is finitely generated, then every proper subgroup H is contained in a maximal

subgroup.
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3. RINGS AND MODULES

QUESTION 3.1. Let R denote the ring of Gaussian integers Z[i] = {a+ ib | a, b ∈ Z}. Recall
that R is a Euclidean domain (and hence a PID) with respect to the norm map | · | : R → Z
defined by

|a+ ib| = a2 + b2.

(1) Find the units in R.
(2) Recall a prime element π in R is an element such that the ideal (π) generated by π

is a prime ideal. Show that 1 + i and 7 are prime ideals.
(3) Let p be a prime in Z and let π ∈ R such that |π| = p. Show that π is prime in R.

Moreover, show that such a prime p satisfies p ≡ 1 mod 4.

Remarks. FERMAT showed that every prime p ≡ 1 mod 4 is a norm of a Gaussian integer.

QUESTION 3.2. Let α =
√
3 and let

R = Z[α] = {a+ bα | a, b ∈ Z}.

Denote P for the principal ideal of R generated by 5.
(1) Show that P is a prime ideal and R/P is a field with 25 elements.
(2) Prove that the ideal (11) generated by 11 is not a prime ideal of R.

DEFINITION 3.3. A ring R is said to be Noetherian if any ascending chain of ideals in R
stabilizes, i.e. if

0 = I0 ⊆ I1 ⊆ I2 ⊆ · · · ⊆ In ⊆ · · · ,
then there is an integer m ≥ 0 such that Im = Im+1.

QUESTION 3.4. Show that every principal ideal domain is Noetherian. (Do not use the
fact that a ring is Noehterian if its ideals are finitely generated.)

QUESTION 3.5. Let R be a commutative ring with 1 ̸= 0 such that for every x ∈ R, there
is a natural number n > 1 such that xn = x. Show that every prime ideal of R is maximal.

QUESTION 3.6. Let E be a field, and f, g ∈ E[X] be irreducible quadratic polynomials.
Let

K = E[X]/(f) and L = E[X]/(g).

Show that
M := E[X, Y ]/(f(X), g(Y ))

is a field if and only if K and L are non-isomorphic as rings (or fields).

QUESTION 3.7 (SPRING 2020). Let A,B be commutative rings with 1. Show that any
ideal of A×B is of the form I × J for ideals I ≤ A and J ≤ B.

QUESTION 3.8 (SPRING 2020). Let R be the set of all polynomials over a field F whose
linear coefficient is 0. (Make sure you see why R is a ring.)

(1) Determine R×, the units in R.
(2) Show that R is not a UFD. (Hint. both x2 and x3 are irreducible.)
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QUESTION 3.9 (FALL 2021). Let R be a commutative ring and let M be a maximal ideal
of R.

(1) If M is principal, show that there is no ideal I ≤ R satisfying Mn ⊊ I ⊊ Mn−1 for
any n ≥ 1.

(2) When M is not principal, give an example of an ideal I satisfying Mn ⊊ I ⊊ Mn−1

for any n ≥ 1.

QUESTION 3.10 (FALL 2018). Let R be a commutative integral domain. A left R-module
M is said to be divisible if for any m ∈ M , and nonzero r ∈ R, there is an m′ ∈ M such that
rm′ = m. In other words, rM = M for any nonzero r ∈ R.

(1) Show that Q/Z is a divisible Z-module.
(2) Let R be a PID and not a field. Show that no nonzero finitely generated ideal of R

is divisible.

QUESTION 3.11 (FALL 2023). Let Φ12(x) = x4 − x2 + 1 ∈ Q[x].
(1) Show that Φ12 is irreducible over Q. (It is the minimal polynomial of a primitive

12-th root of unity.)
(2) Give an explicit matrix A ∈ M4(Q) with characteristic polynomial Φ12(x).

QUESTION 3.12. Let R be a local ring with maximal ideal m. Let A = diag(α1, . . . , αn) be
an invertible matrix with αi ̸= αj mod m for any i ̸= j. Show that the R-algebra generated
by powers of A is the algebra of diagonal matrices.

QUESTION 3.13 (SPRING 2019). Let R be a commutative ring with 1 having pairwise
distinct maximal ideals m1, . . . ,mk such that mn1

1 · · ·mnk
k = 0.

(1) Show that
R ∼= R/mn1

1 × · · · ×R/mnk
k .

(2) Show that an element of R is either a unit or a nilpotent.
(3) Give an example of such an R.

QUESTION 3.14 (SPRING 2019). Let p be a prime and d ≥ 1 be a positive integer. Deter-
mine the number of monic irreducible polynomials of degree d over Fp.

QUESTION 3.15 (FALL 2018). A ring homomorphism f : R → S is called centralizing if
the ring S is generated by f(R) together with CS(f(R)) = {s ∈ S | sf(r) = f(r)s for all r ∈
R}. (For example, if f is surjective or if S is commutative, then f is evidently centralizing.)
Prove:

(1) Composites of centralizing ring homomorphisms are centralizing.
(2) If f is centralizing, then f(I)S is an ideal of S for every ideal I of R.
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