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ABSTRACT

This thesis aims to present some applications of the Chebotarev Density
Theorem to the theory of elliptic curves and modular forms, as seen in the
paper [Ser81] by Jean-Pierre Serre. We start by introducing the algebraic
theory of elliptic curves, consisting of topics such as the group law on elliptic
curves, Weierstrass equations, isogenies and Tate modules. We also look at
`-adic representations attached to elliptic curves and their properties. We
move on to the statement of Chebotarev’s theorem and look at certain ef-
fective forms of the theorem and a generalization to the `-adic case. In the
case of elliptic curves without complex multiplication, calculating the den-
sity of the set of primes p such that ap(E) = h is one of the applications of
the Chebotarev’s theorem. We then move on to non-lacunarity of Fourier
coefficients associated to Hecke eigenforms and calculate the density of the
non-zero Fourier coefficients. We conclude with non-lacunarity of a general
modular form of weight k ≥ 2.
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LIST OF SYMBOLS OR
ABBREVIATIONS

Z set of integers

R set of real numbers

C set of complex numbers

C/K curve C defined over K.

C(K) K-rational points in C.

GRH Generalized Riemann Hypothesis

T`(E) Tate module of the elliptic curve E

OF ring of integers in a number field F .

σp Frobenius substitution (or element) at p.

Dp(K) a decomposition group at p ⊆ OK in Gal(K/K).

Ip(K) an inertia group at p ⊆ OK in Gal(K/K).

IK Inertia group of a local field K in Gal(K/K).

Mk(N,ω) Modular forms of level N and type (k, ω)

Sk(N,ω) Space of cusp forms in Mk(N,ω)

Ek(N,ω) Space of Eisenstein series in Mk(N,ω)

af (n) The n-th Fourier coefficient of the modular form f .

Mf (x) #{1 ≤ n ≤ x | af (n) 6= 0}
Scm(k,N, ω) 〈{f(dz), where f(z) is a CM newform}〉
Snon

cm (k,N, ω) 〈{f(dz), where f(z) is a non-CM newform}〉
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1. INTRODUCTION

This thesis consists mainly of two parts:

• Theory of elliptic curves.

• Applications of Chebotarev’s theorem.

We start with the theory of elliptic curves and cover topics such as: Weier-
strass equations for elliptic curves, Isogenies, Tate modules, Weil pairing and
end it with a structure theorem for the endomorphism ring of elliptic curves.
The theory (including the Appendix) we give covers most of the sections
from the first 3 chapters of [Sil06]. The `-adic representation attached to an
elliptic curve is used later in the section relating applications of Chebotarev’s
theorem to elliptic curves.

Elliptic curves over a field K are smooth projective curves of genus 1
with a specified rational point. Every elliptic curve over K has a Weierstrass
equation of the type:

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, ai ∈ K.

Elliptic curves are special in the sense that they are groups with respect
to an addition law induced from the Riemann–Roch Theorem. This group
law also has a geometric realization. We deal with the category of elliptic
curves where maps between two elliptic curves are isogenies : a map which is
a morphism of varieties and a homomorphism of groups.

Let E/K be an elliptic curve and ` be a prime. The `-adic Tate module
of E is the inverse limit of the groups E[`m] containing points of order `m.
The Galois group GK = Gal(K/K) acts on the Tate module, giving us an
`-adic representation

ψ` : GK → GL2(Z`).
The representation ψ` is unramified almost everywhere and, when E doesn’t
have complex multiplication, ψ`(GK) is open in GL2(Z`). The latter is an
involved theorem by Serre (cf. [Ser98]).

The chapter on elliptic curves ends with the following classification of the
endomorphism ring of an elliptic curve. Let E/K be an elliptic curve, then
End(E) is one of the following:
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• An order in Q.

• An order in an imaginary quadratic field.

• An order in a quaternion algebra.

Next, we move on to the Chebotarev density theorem, its statement and
effective versions of it, as seen in [Ser81]. One of the main theorem which is
used time and again is the following Chebotarev like Theorem. Let πC(x) =
#{p ≤ x | σp ∈ C}.

Theorem 1.1 (cf. Theorem 10, [Ser81], or Theorem 3.9 below). Let d be
a real number such that 0 ≤ d < N and let dimM C ≤ d. Taking α =
(N − d)/N , we have:

i)

πC(x) = O

(
Li(x)

ε(x)α

)
as x→∞, (1.1)

where,
ε(x) = log x(log log x)−2(log log log x)−1. (1.2)

ii) (Assuming GRH)

πC(x) = O

(
Li(x)

εR(x)α

)
as x→∞, (1.3)

where,
εR(x) = x1/2(log x)−2. (1.4)

We use the above theorem in the context of elliptic curves to get a bound
for PE,h(x) = #{p ≤ x | ap(E) = h}, where h ∈ Z, E is an elliptic curve,
Ẽ(p) is the reduction mod p of E, Ẽ(Fp) is the Fp rational points on Ẽ(p)
and ap(E) = 1 + p− |Ẽ(Fp)| is the trace of the Frobenius endomorphism of
the elliptic curve Ẽ(p). We also prove that the natural density of the set of
primes {p ≤ x | ap(E) = h} is 0.

The last chapter deals with Fourier coefficients of Modular forms for the
congruence subgroup Γ0(N) of Nebentypus ω and of weight k > 1. First,
we deal with Hecke eigenforms of type CM and non-CM. In the case when f
is a non-CM Hecke eigenform, we get the asymptotic behaviour of Mf (x) =
#{n ≤ x | af (n) 6= 0}. More precisely, there is an α > 0 such that

Mf (x) ∼ αx.
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In this case, we see some examples, one of which is the Ramanujan Delta
function. We prove that the the set M∆(x) has density∏

τ(p)=0

(
1− 1

p+ 1

)
.

When f is a Hecke eigenform of type CM, we have

Mf (x) ∼ αx/(log x)1/2.

In this case we see that the density of Mf (x) is 0.
We end the thesis with a result regarding general modular forms in

Mk(N,ω). More precisely, we prove the following theorem:

Theorem 1.2 (cf. Theorem 17, [Ser81], Theorem 5.36 below). Let f ∈
Mk(N,ω), with k ≥ 2.

(i) If f 6∈ Scm(k,N, ω), we have

Mf (x) � x as x→∞.

(ii) If f ∈ Scm(k,N, ω) and f 6= 0, we have

Mf (x) � x/(log x)1/2 as x→∞.



2. ALGEBRAIC THEORY OF
ELLIPTIC CURVES

In this chapter, we study the Riemann–Roch Theorem which gives informa-
tion about dimensions of certain function spaces and introduces the concept
of genus of a curve. This will be needed in defining an elliptic curve. A good
reference for the algebraic geometric background are the first two chapters
of [Sil06]. Some of the prerequisites can be found in the Appendices as well.

We work with the usual notations found in [Sil06]. Let

K perfect field.
K fixed algebraic closure of K.
C/K curve C defined over K.
C(K) K-rational points in C.

2.1 The Riemann–Roch Theorem

For a smooth curve C, we define a partial order on Div(C) as follows.

Definition 2.1. For a divisor D =
∑

nP (P ), we say that D ≥ 0 if nP ≥ 0

for all P ∈ C. Similarly, for D1, D2 ∈ Div(C), we say that D1 ≥ D2 if
D1 −D2 ≥ 0.

Example 2.2.

(a) Let f ∈ K(C)∗ be such that f is regular everywhere except at a point
P , with a pole of order at most nP . This can be written as

div(f) ≥ −nP (P ).

Similarly,
div(f) ≥ (Q)− nP (P )

says that f has a zero at Q.
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(b) We saw earlier that if C : y2 = (x− e1)(x− e2)(x− e2) then

div(y) = (P1) + (P2) + (P3)− 3(P∞)

, where Pi = [ei, 0, 1] and P∞ = [0, 1, 0]. Hence, in the above language,
we have

div(y) ≥ −3(P∞).

Definition 2.3. For D ∈ Div(C), define

L(D) = {f ∈ K(C)∗ | div(f) ≥ −D} ∪ {0}.

For D = 0, we have L(0) = {f | ordP (f) ≥ 0 ∀P ∈ C}. We know that
deg(div(f)) = 0 and hence for an f 6∈ K∗, we f should have a pole, i.e. a
point Q ∈ C such that ordQ(f) < 0. Hence

L(0) = K

Proposition 2.4. (a) If deg(D) < 0 then L(D) = {0}.

(b) L(D) is a finite dimensional vector space over K. More specifically, If
`(D) is the dimension of L(D), then

`(D) ≤ deg(D) + 1.

Proof. Let Let D =
∑

nP (P ).

(a) We prove the contrapositive of the statement. If f 6= 0 ∈ L(D) then as
div(f) +D ≥ 0 we have

deg(div(f)) + deg(D) = deg(D) ≥ 0.

(b) First we see that L(D) forms a K-vector space. For f, g ∈ L(D) and
α ∈ K we have

ordP (f + αg) ≥ min{ordP (f), ordP (g)} ≥ nP .

Hence we see that f + αg ∈ L(D).

Let Q be such that D − (Q) ≥ 0 and let t = tQ be a uniformiser at Q.
Define the K-linear map T : L(D)→ K by

T (f) = tnQf(Q).
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This is well defined as ordQ(f) ≥ −nQ. The kernel of T is seen to be
L(D − (Q)) and hence we have an injecition

L(D)

L(D − (Q))
−→ K.

Therefore we have `(D) ≤ 1 + `(D − (Q)). By doing the same process,
as only finitely many nQ’s are non-zero, we get

`(D) ≤ 1 + deg(D)

We say that two divisors D1, D2 are linearly equivalent if they represent
the same element in Pic(C).

Proposition 2.5. If D1 and D2 are linearly equivalent, then L(D1) ∼= L(D2).

Proof. Let f ∈ K(C) such that D1 = div(f) + D2. Consider the map
φ : L(D1)→ L(D2) defined by

φ(g) = fg.

This is seen to be an isomorphism of K-vector spaces.

Example 2.6. Let KC be a canonical divisor, say KC = div(ω). For a
function f ∈ L(KC), we have

div(f) ≥ −div(ω)

Hence fω is a holomorphic form, that is ordP (fω) ≥ 0 for all P . Similarly, for
a holomorphic form fω we have f ∈ L(D). As all differential forms in Ω(C)
are of the form fω for some f ∈ K(C)∗, we have the following isomorphism.

{Holomorphic forms in Ω(C)} ∼= L(KC).

Now let us see the statement of our main result.

Theorem 2.7 (Riemann–Roch). Let C be a smooth curve and KC be a
canonical divisor of C. There exists an integer g, called the genus, such that
for all D ∈ Div(C), we have

`(D)− `(KC −D) = deg(D)− g + 1.

Corollary 2.8. (a) `(KC) = g
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(b) deg(KC) = 2g − 2

(c) If deg(D) > 2g − 2, we have

`(D) = deg(D)− g + 1

Proof. (a) Immediate from the Riemann–Roch Theorem for D = 0.
(b) For D = KC .
(c) If deg(D) > 2g − 2 = deg(KC), then deg(KC − D) < 0. Therefore,
`(KC −D) = 0 and `(D) = deg(D)− g + 1.

Example 2.9. Let C : XY = Z2 be the hyperbola and x = X/Z = Z/Y :
C → P1 be the rational map defined by

[a, b, 1] 7→ [a, 1]

[0, 1, 0] 7→ [0, 1]

[1, 0, 0] 7→ [1, 0]

For a point P = [a, b, 1], consider x− a ∈ K(C). We have

MP = (x− a, y − b) =

(
x− a, 1

x
− 1

a

)
= (x− a)

implying x− a is a uniformiser at P . For the point P0 = [0, 1, 0] we have

MP0 = (X/Y,Z/Y ) = (Z/Y ) = (x)

as X/Y = (Z/Y )2. Therefore, x is a uniformiser at P0. For P1 = [1, 0, 0] we
have Z/X = 1/x as a uniformiser and hence ordP1(dx) = −2. From all this
we get,

div(dx) = −2(P1)

So, for KC = div(dx), we have 2g − 2 = deg(KC) = −2 and hence g = 0.

Example 2.10 (Elliptic Curves). Let C : y2 = (x− e1)(x− e2)(x− e3), we
know that

div(dx/y) = 0.

Hence we can take KC = 0 and get

g = `(KC) = `(0) = 1.

By the Riemann–Roch Theorem (2.7), for any divisor D with deg(D) ≥ 1
we have

`(D) = deg(D).

Let us see some special consequences.
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(i) For a point P ∈ C, we have `((P )) = deg((P )) = 1 and hence L((P )) =
K. What this says is that there doesn’t exist a non constant f ∈ K(C)
with div(f) + (P ) ≥ 0, or equivalently having a simple pole at only P .

(ii) Let P∞ = [0, 1, 0] and D = 2(P∞). We have `(D) = 2 and as div(x −
ei) = 2(Pi)− 2(P∞) ∈ L(D), we have {1, x} to be a basis for L(D).

(iii) Similarly, {1, x, y} forms a basis for L(3(P∞)).

2.2 Applications of the Riemann–Roch

Theorem

We shall look at certain applications of the Riemann–Roch theorem, which
will also help us later in proving that isogenies of elliptic curves are homo-
morphisms.

Definition 2.11 (Elliptic Curve). An elliptic curve over K is a smooth
projective curve of genus 1 with a distinguished point O. It is denoted as
(E,O).

2.2.1 A Group Law on Elliptic Curves

For an elliptic curve (E,O), recall that two divisors D1, D2 ∈ Div(E) are
linearly equivalent (written D1 ∼ D2) if there is an f ∈ K(E)∗ such that

D1 −D2 = div(f).

Proposition 2.12. For P,Q ∈ E, we have a unique R ∈ E such that

(P ) + (Q) ∼ (R) + (O)

as divisors.

Proof. First we shall prove the existence. Let D = (P )+(Q)−(O) ∈ Div(E),
we have deg(D) = 1 implying `(D) = 1 by Riemann–Roch Theorem. For a
nonzero f ∈ L(D), we have

div(f) +D = div(f) + (P ) + (Q)− (O) ≥ 0.

Let div(f) +D =
∑
S

nS(S), we have nS ≥ 0 and

∑
S

nS = deg(div(f) +D) = deg(div(f)) + deg(D) = 1.
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This can happen only when one of the coefficients nR = 1 for some R, and
nS = 0 for S 6= R. Hence, div(f) +D = (R) for some R ∈ E. Hence

(P ) + (Q) ∼ (R) + (O)

for some R ∈ E.
Now for the uniqueness, let R1, R2 ∈ E such that

(P ) + (Q) ∼ (R1) + (O) ∼ (R2) + (O).

We have (R1) ∼ (R2), hence

div(f) = (R1)− (R2)

for some f ∈ K(E)∗. This says that f ∈ L(R2). From the Riemann–Roch
Theorem, we know that L(R2) = K, implying that f ∈ K∗. Therefore, we
have

(R1) = (R2) + div(f) = (R2).

Remark 2.13. We see that the above proposition can be stated in a more
general way as it works for any divisor D ∈ Div(E) with deg(D) = 1 in place
of (P )+(Q)− (O). That is, for a divisor D ∈ Div(E) with degree 1, we have
a unique Q ∈ E such that D ∼ (Q).

Consider the map σ : E×E → E defined by (P,Q) 7→ R, where R was the
unique point as in Proposition 2.12. The map σ is surjective as (R,O) 7→ R
for every R ∈ E . We can define addition of two points P,Q to be the point
R = σ(P,Q).

We see that (E, σ) forms an abelian group. It is clear to see the identity
is O and σ(P,Q) = σ(Q,P ). Let us prove the associativity of this addition
law. Let P,Q,R ∈ E, σ(P,Q) = S and σ(Q,R) = T . We should show that

σ(S,R) = σ(P, T ).

We have

(σ(S,R)) + (O) ∼ (S) + (R)

∼ (P ) + (Q)− (O) + (R)

∼ (P ) + (T )

∼ (σ(P, T )) + (O).

Hence, σ(S,R) = σ(P, T ) and this proves the associativity. For the inverse,
consider a point P ∈ E. We can apply the remark (2.13) for the divisor
D = 2(O)− (P ) to get the inverse Q ∈ E of P .
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2.2.2 Another Group Law on Elliptic Curves

As before, let (E,O) be an elliptic curve.

Proposition 2.14. For a divisor D ∈ Div0(E), there exists a unique P ∈ E
such that

D ∼ (P )− (O).

Proof. Use of remark 2.13 for the divisor D + (O).

Define τ : Div0(E)→ E by τ(D) = P , for P as in the above proposition.
The map τ is surjective as τ((P )− (O)) = P .

Proposition 2.15. For two divisors D1, D2 ∈ Div0(E),

D1 ∼ D2 if and only if τ(D1) = τ(D2).

Proof. Let τ(D1) = τ(D2) = Q, then

D1 ∼ (Q)− (O) ∼ D2.

If D1 ∼ D2, then
D1 ∼ (τ(D1))− (O) ∼ D2.

Implying τ(D1) = τ(D2).

Therefore, from the above proposition, we get the induced bijection

τ : Pic0(E)→ E,

from which we can put a group structure on E. Let us denote the group by
(E, τ).

2.2.3 The Two Group Laws are Same

We just have to verify that τ : Pic0(E) → (E, σ) is a homomorphism. It is
enough to show that

τ(D1 +D2) = σ(τ(D1), τ(D2)),

for D1, D2 ∈ Div0(E). Let τ(D1 +D2) = Q, we have (Q)− (O) ∼ D1 +D2.
Hence,

(Q) + (O) ∼ (D1 + (O)) + (D2 + (O))

∼ (τ(D1)) + (τ(D2)).

Therefore, τ(D1 + D2) = Q = σ(τ(D1), τ(D2)). So, for d1 = D1, d2 = D2 ∈
Pic0(E), we have

τ(d1 + d2) = τ(D1 +D2) = σ(τ(d1), τ(d2)),

as τ(D) = τ(D).
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2.2.4 The Geometric Group Law

Let (E,O) be an elliptic curve. For P,Q ∈ E, consider the line passing
through them and let it intersect the elliptic curve at a third point R. Take
the line passing through R and O, define P + Q to be the third point of
intersection of this line with E. This makes E into a group with identity O.
This addition law is called as the geometric group law.

We will see that the geometric group law is the same as the two group
laws mentioned above.

Theorem 2.16. The map τ : Pic0(E)→ E defined above is an isomorphism
of groups, where E has the geometric group law.

Proof. It is enough to prove that

τ(D1 +D2) ∼ τ(D1) + τ(D2) ∀ D1, D2 ∈ Div0(E).

Let τ(D1) = P and τ(D2) = Q, we have

D1 ∼ (P )− (O) and D2 ∼ (Q)− (O).

We have D1 +D2 ∼ (P ) + (Q)−2(O) and hence, we need to show σ(P,Q) =
P +Q.

Consider the line L1 : f(X, Y, Z) = aX + bY + cZ = 0 passing through
P,Q and meeting at R. As Y/Z ∈ L(3(O)) and ordO(Y ) = 0, we have
ordOZ = 3. We also have ordX(f) = 1 for X = P,Q,R. Therefore for
f/Z ∈ K(E)∗ we see that

div(f/Z) = (P ) + (Q) + (R)− 3(O).

Similarly, if L2 : g(X, Y, Z) = pX + qY + rZ = 0 is the line through R,O
and P +Q, we have

div(g/Z) = (R) + (P +Q)− 2(O).

Therefore, we have

div

(
f

g

)
= (P ) + (Q)− (P +Q)− (O).

Hence, σ(P,Q) = P +Q.

Remark 2.17. By the above discussions, all the group laws which we defined
on E are isomorphic. We therefore have the following exact sequence,

1→ K
∗
↪→ K

∗
(E)

div−→ Div0(E)
τ−→ E → 0

as E ∼= Pic0(E).
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2.3 Weierstrass Equation

The definition given for an elliptic curve is usually not the working definition.
It is a curve, so we want an equation satisfied by the points on the elliptic
curve. Indeed, there exists (cf. §2.3.1 below) a Weierstrass equation of the
elliptic curve. We will again use the Riemann–Roch Theorem to prove that
every elliptic curve has a Weierstrass equation.

From now on, we use a short-hand notation and just write E for the
elliptic curve (E,O).

Definition 2.18. An elliptic curve E is isomorphic to a curve given by an
equation of type,

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3

in the projective plane P2. The above equation is called as a Weierstrass
equation for an elliptic curve.

If ai ∈ K, we say the elliptic curve is defined over K. In most cases, given
a Weierstrass equation for E, we write it in its non-homogeneous form

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

with the point [0, 1, 0] at infinity.
If CharK 6= 2, we can change the coordinates to bring the equation to a

much simpler form,

E : y2 = x3 + b2x
2 + b4x+ b6,

by the transformation y 7→ (y − a1x− a3)/2, where

b2 = a2
1 + 4a4, b4 = 3a4 + a1a3, b6 = a2

3 + 4a6.

If we further assume that Char(K) 6= 3, then by a similar transformation we
bring the equation to the form y2 = f(x), where f(x) is a depressed cubic.

Definition 2.19. We define the invariant differential attached to the Weier-
strass equation of the elliptic curve E as

ω =
dx

2y + a1x+ a3

= − dy

3x2 + 2a2x+ a4 − a1y
(2.1)

Remark 2.20. Before going further, let us fix some notations. Taking
F (x, y) = y2 + a1xy + a3y − x3 − a2x

2 − a4x − a6, we write the elliptic
curve E : F (x, y) = 0. Also, we write (a, b) to denote the point [a, b, 1] ∈ E.
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Earlier, we saw that for an elliptic curve of the form y2 = (x − e1)(x −
e2)(x− e3), the invariant differential ω is such that div(ω) = 0. This is true
for a general elliptic curve, as we prove below.

Theorem 2.21. The invariant differential ω attached to an elliptic curve E
satisfies

div(ω) =
∑
P∈E

ordP (ω)(P ) = 0.

Proof. Let P = (a, b) ∈ E. We have

ω =
d(x− a)

Fy(x, y)
= −d(y − b)

Fx(x, y)

First, let us assume Char(K) 6= 2. Consider the map φ : E → P1

sending [x, y, 1] → [x, 1]. We have deg(φ) = 2, as K(E) = K(x, y) and
φ∗(K(P1)) = K(x). We have the following extensions of fields and DVR’s,

OX K(E)

φ∗(Oφ(P )) φ∗(K(P1))

i

i

for X = P,Q and where i is the inclusion map. So, by factorization of ideals
in extensions of Dedekind domains, we get

φ∗(Mφ(P )) = MPMQ

for P,Q ∈ E such that φ(P ) = φ(Q) = [a, 1]. As Mφ(P ) = (x− a), we have

ordP (φ∗(x− a)) =

{
2 if P = Q (ordP (Fy(x, y)) = 1)

1 otherwise (ordP (Fy(x, y)) = 0).

For x = a, we get

y2 + (a1a+ a3)y − (a3 + a2a
2 + a4a+ a6) = 0.

So, P = Q if and only if the above equation is not separable, and this is
equivalent to saying Fy(a, b) = 0. As Char(K) 6= 2, we have

ordP (ω) = ordP (d(x− a)/Fy(x, y)) = ordP (d(x− a))− ordP (Fy(x, y))

= ordP (x− a)− 1− ordP (Fy(x, y)).
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We have φ∗(x− a) = x− a ∈ K(E), where the latter x = X/Z. Hence from
the above equation and using the above order formula we have

ordP (ω) = 0.

For Char(K) = 2, consider the rational map ψ : [x, y, 1] → [y, 1]. This has
degree 3 and

φ∗(M[b,1]) = MPMQMR,

where ψ(P ) = ψ(Q) = ψ(R) = [b, 1]. We, similarly as before have,

ordP (y − b) =


3 if P = Q = R (ordP (Fx(x, y)) = 2)

1 if P 6= Q 6= R (ordP (Fx(x, y)) = 0)

2 otherwise (ordP (Fx(x, y)) = 1).

Hence, by a similar argument as above, we have ordP (ω) = 0.
Now, we need to check at O = [0, 1, 0]. For a uniformiser t at O, we have

x = t−2g and y = t−3f , where f, g 6∈ MO. So, by substituting this in our
formula for ω, we get

ω =
dx

2y + a1x+ a3

=
−2t−3gdt+ t−2dg

2t−3f + a1t−2g + a3

=
−2g + t(dg/dt)

2f + a1tg + a3t3
dt.

It is now clear to see that ordO(ω) = 0 if Char(K) 6= 2. If Char(K) = 2,
then we consider

ω =
dy

3x2 + 2a2x+ a4 − a1y
=

−3f + t(df/dt)

3g2 + 2a2t2g + a4t4 − a1tf
dt.

Hence, even in this case, ordP (ω) = 0.

The next theorem classifies curves with singular Weierstrass equation.

Theorem 2.22. Let E be a singular curve with a Weierstrass equation. Then
there is a rational map φ : E → P1 with deg(φ) = 1.

Proof. Let E be a singular elliptic curve and by linear transformations, we
can assume the singular point is (0, 0). From this we have the Weierstrass
equation to be

y2 + a1xy = x3 + a2x
2.

Let φ : E → P1 be a rational map defined by [a, b, 1] 7→ [a, b]. By taking
t = y/x, we have t2+a1t−a2 = x. Hence we have the inverse map ψ : P1 → E
defined by

[1, t] 7→ [t2 + a1t− a2, t
3 + a1t

2 − a2t].

We have φ ◦ ψ =Id on P1 and hence, ψ∗ ◦ φ∗ =Id on K(P1). From this
ψ∗ : K(E)→ K(P1) is surjective, implying K(P1) ∼= K(E).
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2.3.1 Existence of a Weierstrass Equation

For the theorem that follows regarding the existence of Weierstrass equation,
we need some lemmas.

Lemma 2.23 (cf. [Sil06], Proposition 5.8). If C is a smooth curve defined
over K and D ∈ DivK(C), then L(D) has a basis of elements in K(C).

Lemma 2.24. If f1, · · · , fn ∈ K(C) are defined over K and are linearly
dependent over K, then they are linearly dependent over K.

Proof. Let
a1f1 + · · ·+ anfn = 0,

where ai ∈ K. WLOG, we can take a1 = 1 6= 0 by the fact that one of ai
is non-zero and we can divide by it in the equation. Consider the smallest
Galois extension containing ai’s, call it L. For any σ ∈ Gal(L/K), by its
action on K(C), we have

n∑
i=1

(aifi)
σ =

n∑
i=1

σ(ai)fi = 0

as fi’s are defined over K. By summing the equation over σ ∈ Gal(L/K),
we get

∑
σ

n∑
i=1

σ(ai)fi =
n∑
i=1

(∑
σ

σ(ai)

)
fi =

n∑
i=1

TrL/K(ai)fi = 0.

As TrL/K(ai) ∈ K and TrL/K(a1) = TrL/K(1) 6= 0, we have proved the
lemma.

Theorem 2.25. Let E be an elliptic curve defined over K.

(a) There exists x, y ∈ K(E) such that the map φ : E → P2 defined by

φ = [x, y, 1] and φ(O) = [0, 1, 0]

is an isomorphism from E to a curve

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3,

where ai ∈ K. In this case, we call x, y to be the Weierstrass coordinates
for the elliptic curve.
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(b) Any two Weierstrass coordinates (x, y) and (X, Y ) for E are related by
the following transformation,

X = u2x+ b, Y = u3y + su2x+ c

where u ∈ K∗, b, s, c ∈ K.

(c) A smooth cubic curve C with a Weierstrass equation is an elliptic curve
with the point [0, 1, 0] at infinity.

Proof. (a) From the Riemann–Roch Theorem, we have

`(n(O)) = n ∀ n ≥ 1.

So from Lemma 2.23, there exists x, y ∈ K(E) such that {1, x} forms a
basis for L(2(O)) and {1, x, y} forms a basis for L(3(O)). Due to this,
we see that x and y have a pole of order exactly 2 and 3 respectively, at
O. From this we have the follwing seven elements

1, x, x2, x3, xy, y, y2 ∈ L(6(O)).

As `(6(O)) = 6, the above seven elements are linearly independent over
K. That is, we have

A0 + A1x+ A2x
2 + A3x

3 +B0y +B1xy +B2y
2 = 0,

where Ai, Bi ∈ K and for some Ai or Bi non-zero. The interesting part
is that we can assume Ai, Bi ∈ K from Lemma 2.24.

We see A3 = 0 implies B2y
2 +B1xy ∈ L(4(O)), which is a contradiction

as
ordO(B2y

2 +B1xy) ≥ 5.

So A3 6= 0. Similarly, B2 6= 0. To bring the above equation into the
required Weierstrass form, we take y = A2

3B2Y and x = −A3B2X. The
new equation is,

−(a0 + a1X + a2X
2 +X3) + b0Y + b1XY + Y 2 = 0

After dividing by A4
3B

3
2 . As X, Y are just multiples of x, y, we take them

to be our new x, y.

So the map φ : E → P2 defined by

φ = [x, y, 1] , φ(O) = [0, 1, 0]
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maps E onto the curve C : a0 + a1X + a2X
2 +X3 = b0Y + b1XY + Y 2.

It is worth noting that this map is well defined, as

φ(O) =

[
x

y
(O), 1,

1

y
(O)

]
= [0, 1, 0].

Now we show that deg(φ) = 1. We have φ∗ : K(C)→ K(E), so we need
to show that φ∗(K(C)) = φ∗(K(X, Y )) = K(x, y) = K(E). Consider
the rational map f = [x, 1] : E → P1. The point(s) P ∈ E such that
f(P ) = [1, 0] are the pole(s) of x, i.e., P = O. Hence, as Y/X is a
uniformiser at [1, 0], we have

ef (O) = deg(f) = ordO(f ∗(Y/X)) = ordO(x−1) = 2.

Therefore, [K(C) : K(x)] = 2. Similarly, degree of the map [y, 1] :
E → P1 is 3 and we have [K(E)) : K(y)] = 3. Hence we get [K(E) :
K(x, y)] = 1, as it divides both 2 and 3.

The curve C is non-singular. If it weren’t, by Theorem 2.22, we have a
rational map

E
φ−→ C −→ P1

where the latter map is (a, b) 7→ [a, b]. The two maps have degree 1 and
hence, their composition has degree 1. By the following two lemmas, we
get a contradiction to the fact that C was singular.

Lemma 2.26. Let φ : C1 → C2 be a rational map between two smooth
curves of degree 1. Then φ is an isomorphism.

Lemma 2.27. If a curve C is isomorphic to P1, then C has genus 0.

Lemma 2.26 tells that the map E → P1 is an isomorphism and Lemma
2.27 says that E should have genus 0. This is the required contradiction.

From the above discussion, we have φ : E → C to be a degree 1 map
between smooth curves. So, from Lemma 2.26, we have φ to be an
isomorphism.

(b) We know that {1, x} and {1, x, y} forms a basis for L(2(O)) and L(3(O))
respectively. As X ∈ L(2(O)) and Y ∈ L(3(O)), we have

X = ax+ b, Y = c+ dx+ ey2

for a, b, c, d, e ∈ K as X, Y are defined over K. To bring it in the required
form, we see that a3 = e2 = 1, as leading coefficients of x3 and y2 are 1
in the Weierstrass equation. By taking u = e/a ∈ K∗ and s = d/u2, we
get

X = u2x+ b, Y = c+ u2sx+ u3y2.



2. Algebraic Theory of Elliptic Curves 18

(c) Let g be the genus of C and ω be the invariant differential. We saw in
Theorem 2.21 that

div(ω) = 0.

So by taking KC = 0 and applying the Riemann–Roch theorem, we get

g = `(KC) = `(0) = 1.

Hence, (C, [0, 1, 0]) is an elliptic curve.

2.3.2 Quantities Attached to a Weierstrass Equation

Consider an elliptic curve E/K with the following non-homogeneous Weier-
strass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

We define,

b2 = a2
1 + 4a4,

b4 = 3a4 + a1a3,

b6 = a2
3 + 4a6,

b8 = b2a6 − a1a3a4 + a2a
2
3 − a2

4,

c4 = b2
2 − 24b4,

c6 = −b3
2 + 36b2b4 − 216b6,

∆(E) = −b2
2b8 − 8b3

4 − 27b2
6 + 9b2b4b6, and

j =
c3

4

∆
.

(2.2)

Here, ∆(E) is called as the discriminant of the Weierstrass equation and j is
called as the j-invariant of the elliptic curve E. The motivation for defining
such quantities may be seen better when Char(K) 6= 2, 3. In this case, we
can transform the Weierstrass equation to the form

y2 = 4x3 − g2x− g3 = 4x3 − c4

12
x− c6

216
.

From this we also see that

16∆ = 16(g3
2 − 27g2

3) = ∆′,

where ∆′ is the discriminant of the cubic 4x3 − g2x− g3.
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2.4 Isogenies

In this section, we talk about special morphisms between elliptic curves that
preserve the point at infinity. We will first see that the addition and inverse
maps on the elliptic curve are morphisms, thus making it an abelian variety.

2.4.1 Highlights From The Group Law

We shall give the equations for the group law and not prove them.

Proposition 2.28. Let P = (x1, y1), Q = (x2, y2) be points on the elliptic
curve E. We have

P +Q := (x3, y3) = (−x1 − x2 + λ2 + a1λ− a2,−(λ+ a1)x3 − ν − a3)

where λx+ν is the line passing through P,Q (or the tangent at P if P = Q).
More specifically,

(λ, ν) =


(
y2 − y1

x2 − x1

,
y1x2 − y2x1

x2 − x1

)
if x1 6= x2,(

3x2
1 + 2a2x1 + a4 − a1y

2y1 + a1x+ a3

,
−x3

1 + a4x1 + 2a6 − a3y1

2y1 + a1x+ a3

)
if x1 = x2.

From the proposition, we have the duplication formula,

x(2P ) =
x4 − b4x

2 − 2b6x− b8

4x3 + b2x2 + 2b4x+ b6

, (2.3)

Where x(2P ) is the x-coordinate of 2P and bi’s as defined in (2.2).
For an elliptic curve (E,O), we have two operations from the group law.

Namely,

+ : E × E → E ; (P,Q) 7→ P +Q,

− : E → E ; P 7→ −P.

Analogous to the cases of topological groups, where the group operations
are continuous maps, and Lie groups, where the group operations are smooth
maps, we have + and − to be morphisms between varieties.

Remark 2.29 (Segre Embedding). For a projective variety V ⊆ Pn, we
look at V × V as a projective variety with respect to the Segre embedding of
Pn × Pn into Pn(n+2).
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Let {X0, · · · , Xn}, {Y0, · · · , Ym} be coordinates for Pn,Pm respectively.
We define the map φ : Pn × Pm −→ PN as

φ([X0, · · · , Xn], [Y0, · · · , Ym]) = [X0Y0, X0Y1, · · · , XiYj, · · · , XnYm],

where N = (n + 1)(m + 1) − 1. The map φ defined is called as the Segre
embedding. We see that φ maps Pn×Pm to a projective variety in PN , hence
for projective varieties V ⊆ Pn,W ∈ Pm, φ(V ×W ) is a variety in PN .

In our case, we look at E × E as a projective variety in P5.

Theorem 2.30. The maps + and − defined above are morphisms.

Proof. cf. Silverman [Sil06], Chapter III, Theorem 3.6.

2.4.2 Isogenies

Let (E1,O1) and (E2,O2) be two elliptic curves, where Oi is the identity
elements in the group (Ei,+) for i = 1, 2. As always, we will denote an
elliptic curve (E,O) by just E and O for O1 and O2, where it will be clear
which Oi we are talking about.

Definition 2.31. An isogeny between two elliptic curves E1 and E2 is a
morphism

φ : E1 → E2, such that φ(O) = O.
We then say E1 is isogeneuos to E2.

Example 2.32. Consider the elliptic curve E with the Weierstrass equation
y2 = x3 − x. Consider the map E → E defined by

(x, y) 7→ (−x, iy), O 7→ O.

This is a rational map, hence a morphism, fixing O. So, this is an isogeny
from E to itself.

Example 2.33 (The Frobenius Endomorphism). Let K be a field of char-
acteristic p > 0 and q = pr. For a curve C/K given by the the equation
F (X, Y, Z) = 0, we can define a new curve C(q) as the zero set for the poly-
nomial whose coefficients are qth powers of coefficients of F .

There is a natural map φq : C → C(q) defined by

φq[x0, x1, x2] = [xq0, x
q
1, x

q
2].

Consider an elliptic curve E, then we see that E(q) has a Weierstrass
equation. To see that it is non-singular, we have

∆q = ∆q
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where ∆ and ∆q are the discriminants of E and E(q) respectively. Hence, the
Frobenius map

φq : E → E(q), (x, y) 7→ (xq, yq)

is a morphism and hence an isogeny.
If we take K = Fq, then E(q) = E and hence φq ∈ End(E). This is called

as the Frobenius Endomorphism.

Example 2.34 (Multiplication-by-2 map). Let E be an elliptic curve with
the Weierstrass equation

y2 + a1xy + a2y = x3 + a2x
2 + a4x+ a6,

and P = (x, y) ∈ E. From the formulas of the group operation on E, we
have

2P = (a, b) = (−2x+ λ2 + a1λ− a2,−(λ+ a1)a− ν − a3)

for λ and ν as in Theorem 2.28. Hence, the map [2] : P 7→ 2P is a rational
map, and therefore a morphism. We also have O 7→ O, implying that [2] :
E → E is an isogeny.

We can talk about the set of isogenies between two elliptic curves E1

and E2, denoted by Hom(E1, E2), and give it a group structure. For φ, ψ ∈
Hom(E1, E2), we define their addition by

(φ+ ψ)(P ) = φ(P ) + ψ(P ).

But we should verify that φ+ ψ is an isogeny. This is our next theorem.

Theorem 2.35. The set Hom(E1, E2) forms an abelian group under +.

Proof. It can be easily verified that, the identity element is [0] : P 7→ O.
For an element φ ∈ Hom(E1, E2), we have −φ defined by P 7→ −φ(P ). This
satisfies

φ+ (−φ) = [0].

The only thing left is to show that φ+ψ ∈ Hom(E1, E2). We can see the
map φ+ ψ as composition of maps,

E1
φ×ψ−−→ E2 × E2

+−→ E2.

Let P ∈ E1 and φ = [f1, · · · , fr], ψ = [g1, · · · , gr] in a neighbourhood of
P . This implies that φ × ψ = [f1, · · · , fr, g1, · · · , gr] is a rational map. By
Theorem 2.30, + is a rational map. Hence, the composition of these rational
maps, φ + ψ, is a rational map. As Ei’s are smooth, φ + ψ is a morphism,
which also satisfies (φ+ ψ)(O) = O. This proves the theorem.
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If we consider E1 = E2 = E, then we denote the set by End(E) and call
it the endomorphism ring of E. This forms a ring under the multiplication,

(φψ)(P ) = φ(ψ(P )).

Example 2.36 (Multiplication-by-m map). We can proceed by induction to
see that

[m] : E → E, P 7→ mP

is an isogeny. [1] is the identity map and hence is an isogeny. For m ≥ 2, we
see that

[m] = [m− 1] + [1]

implying [m] is an isogeny. Therefore, [m] ∈ End(E).

From the above example, we have an injection of rings

Z −→ End(E)

defined by m 7→ [m]. An elliptic curve in which that above map isn’t surjec-
tive is called an elliptic curve with complex multiplication, or a CM elliptic
curve for short.

We now see that the map [m] is a non-constant map for m 6= 0, implying
that it is surjective.

Proposition 2.37. Let E/K,E1/K and E2/K be elliptic curves.

(a) The map [m] : E → E is a non-constant rational map for m 6= 0.

(b) Hom(E1, E2) is a torsion free abelian group.

(c) End(E) is a ring of characteristic 0 with no zero divisors.

Proof. (a) Let us first prove that [2] : E → E is non-constant. From equation
(2.3), we see that

2P = O iff 4x3 + b2x
2 + 2b4x+ b6 = 0

at P .

If Char(K) 6= 2, then the above polynomial is a non-zero polynomial and
hence has only finitely many roots, implying that [2] can’t be constant.
If Char(K) = 2, then [2] is a constant map iff b2x

2 + b6 = 0 at all P .
This happens only when b2 = b6 = 0, implying that ∆ = 0. Hence,
[2] is a non-constant map. From this, we also have [2n] = [2]n to be
non-constant, as [2] is surjective.
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If we prove that [m] is non-constant for an odd m, then, by compositing
[m] with [2n], we can prove it for all m 6= 0. The idea is to find an
element Q of order 2, as it would imply that [m]Q 6= O. The polynomial
f = 4x3 + b2x

2 + 2b4x + b6 doesn’t divide g = x4 − b4x
2 − 2b6x − b8, as

∆ 6= 0. Hence, we have a root α ∈ K of f , such that g(α) 6= 0. For
β ∈ K such that Q = [α, β, 1] ∈ E, we see that x(2P ) has a pole at Q.
Hence, 2Q = O.

(b) Let φ ∈ Hom(E1, E2) be an element of finite order, say m. This says
that

mφ = φ+ · · ·+ φ︸ ︷︷ ︸
m times

= [m] ◦ φ = [0].

But as [m] : E2 → E2 is non-constant, we have φ = [0].

(c) From (b), we have that End(E) has characteristic 0. If φ, ψ ∈ End(E),
then

φ ◦ ψ = [0]

implies that one of them must be the constant map, i.e. φ = [0] or
ψ = [0].

2.4.3 Isogenies are Homomorphisms

In this section, we prove that isogenies are homomorphisms of groups.
For a rational map φ : C1 → C2 between two curves C1 and C2 defined

over K, we have the induced map on the function fields fixing K

φ∗ : K(C2)→ K(C1), φ∗(g) = g ◦ φ,
φ∗ : K(C1)→ K(C2), φ∗(f) = (φ∗)−1(N(f)),

where N is the norm on K(C1) over φ∗(K(C2)). We also have the induced
map on the divisor groups

φ∗ : Div(C1)→ Div(C2),
∑
P∈C1

nP (P ) 7→
∑
P∈C1

nP (φ(P )).

Lemma 2.38 ( cf. [Sil06], Proposition II.3.6. (d)). For an f ∈ K(C1)∗, we
have

φ∗(div(f)) = div(φ∗f).

Theorem 2.39. An isogeny between two elliptic curves is a homomorphism
of groups.
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Proof. Let φ : E1 → E2 be an isogeny. If φ is the constant map, then it is
the trivial homomorphism. Assume φ is non-constant, there is the induced
map

φ∗ : Pic0(E1)→ Pic0(E2),

as φ∗(div(f)) = div(φ∗(f)). From the following commutative diagram,

E1 Pic0(E1)

E2 Pic0(E2)

τ−1

φ φ∗

τ

as τ, τ−1 and φ∗ are homomorphisms, we have φ to be a homomorphism.

2.4.4 Dual Isogeny

In this section, we look at the dual of an isogeny. The definition follows from
the theorem below.

Theorem 2.40 (cf. [Sil06], Theorem III.6.1.). For a non-constant isogeny
φ : E1 → E2,

(a) There exists a unique isogeny φ̂ : E2 → E1 such that

φ̂ ◦ φ = [deg(φ)] on E1

(b) Let τ1 and τ2 be the maps

τ1 : Div0(E1)→ E1,
∑
Q

nQ(Q) 7→
∑
Q

[nQ]Q

τ2 : E2 → Div0(E2), P 7→ (P )− (O)

and let

φ∗ : Div0(E2)→ Div0(E1), (Q) 7→
∑

P∈φ−1{Q}

eφ(P )(P ).

be the homomorphism induced by φ. Then, we have

φ̂ = τ1 ◦ φ∗ ◦ τ2 : E2 → E1

as homomorphisms.
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Definition 2.41. For a non-constant isogeny φ : E1 → E2, there exists a
unique isogeny, by Theorem 2.40, φ̂ : E2 → E1 such that

φ̂ ◦ φ = [deg(φ)] on E1.

Example 2.42. Let E be an elliptic curve over a field K with Char(K) = 0.
It is easy to see that # ker [2] = 4 = deg[2]. Hence, as

[2] ◦ [2] = [4] = [deg[2]],

we have [̂2] = [2]. We shall see later that this holds in general for the map
[m] : E → E, where m ∈ Z is non-zero, and for an arbitrary elliptic curve E.

Example 2.43. Let Char(K) 6= 2 and

E1 : y2 = x3 + ax2 + bx,

E2 : Y 2 = X3 + AX2 +BX

be two elliptic curves such that

A = −2a and B = a2 − 4b.

Consider the isogeny φ : E1 → E2 defined by

φ(x, y) =

(
y2

x2
,
y(b− x2)

x2

)
.

For another isogeny ψ : E2 → E1 defined by

ψ(X, Y ) =

(
Y 2

4X2
,
Y (B −X2)

8X2

)
,

we see that ψ ◦ φ = [2] on E1. Therefore, as

deg(φ)deg(ψ) = deg[2] = # ker [2] = 4,

we see that deg(φ), deg(ψ) take values 1, 2 or 4. Let T = (0, 0) ∈ E1 ∩ E2,
we see that

φ(T ) = [y3, y2(b− x2), yx2](T )

= [xy(x2 + ax+ b), x(x2 + ax+ b)(b− x2), yx2](T )

= [y(x2 + ax+ b), (x2 + ax+ b)(b− x2), yx](T )

= [0, 1, 0] = O.

Similarly, we have ψ(T ) = O. This says that φ, ψ cannot be isomorphisms,
as T ∈ kerφ, kerψ and moreover deg(φ), deg(ψ) 6= 1. Hence, as

ψ ◦ φ = [2] = [deg(φ)],

implying ψ = φ̂.
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Now we shall look at certain properties of the dual isogeny.

Proposition 2.44 (cf. [Sil06], Theorem III.6.2.). Let φ : E1 → E2 be an
isogeny.

(a) We have

φ̂ ◦ φ = [deg(φ)] and φ ◦ φ̂ = [deg(φ)].

(b) We have

deg(φ̂) = deg(φ) and
̂̂
φ = φ.

(c) For another isogeny ψ : E2 → E3,

ψ̂ ◦ φ = φ̂ ◦ ψ̂.

(d) For another isogeny λ : E1 → E2, we have

λ̂+ φ = λ̂+ φ̂.

(e) For a non-zero m ∈ Z,

deg[m] = m2 and [̂m] = [m].

From Proposition 2.44, we have λ̂+ φ = λ̂+ φ̂ and from this, we get

λ̂ ◦ φ+ φ̂ ◦ λ = [deg(λ+ φ)]− [deg(φ)]− [deg(λ)]

= [deg(λ+ φ)− deg(φ)− deg(λ)].

We also have the injection [·] : Z → End(E), defined by m 7→ [m]. From
this, we have the following proposition.

Proposition 2.45. The map

〈 , 〉 : Hom(E1, E2)× Hom(E1, E2) −→ Z

defined by 〈λ, φ〉 = deg(λ+ φ)− deg(φ)− deg(λ) is bilinear.

Proof. We see that, from above discussion,

[〈λ, φ〉] = λ̂ ◦ φ+ φ̂ ◦ λ

As RHS is bilinear and using the injection Z → End(E2), the proposition
follows.



2. Algebraic Theory of Elliptic Curves 27

Let us recall the definition of quadratic form.

Definition 2.46. Let G be an abelian group and

d : G→ R

be a map. It is said to be a quadratic form on G if

(i) d(g) = d(−g) for g ∈ G.

(ii) The pairing 〈 , 〉 : G×G→ R defined by

〈g, h〉 = d(g + h)− d(g)− d(h)

is bilinear.

Moreover, it is said to be positive definite if d(g) ≥ 0 for all g ∈ G and
d(g) = 0 if and only if g = 0.

Proposition 2.47. The map

deg : Hom(E1, E2) −→ Z

is a positive definite quadratic form on Hom(E1, E2).

Proof. It is clear from the definitions and Proposition 2.45.

The kernel of the map [m] is also denoted by E[m] and is called the
m-torsion points of E.

Theorem 2.48 (cf. [Sil06], Corollary III.6.4.). Let E be an elliptic curve
and m ∈ Z be non-zero. Then,

(a) If m 6= 0 in K, we have

E[m] ∼=
Z
mZ
× Z
mZ

.

(b) If Char(K) = p, we either have

E[pe] = {O} for all e ≥ 0, or

E[pe] =
Z
peZ

for all e ≥ 0.
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2.5 Tate Modules

2.5.1 Cyclotomic Characters

Let K be a field with Char(K) = p ≥ 0 and K be a fixed algebraic closure
of K. We shall denote the set

µm = {a ∈ K | am = 1}

for the mth roots of unity in K. For a prime number `, we have the natural
maps

µ`n
a→a`−−−→ µ`n−1 for all n ≥ 0.

We see that (µ`n , {a 7→ a`}) forms an inverse system and therefore we can
talk about the inverse limit.

Definition 2.49. The Tate module of K, denoted by T`(K
∗), is defined as

the inverse limit of the inverse system (µ`n , {a 7→ a`}). i.e.

T`(K
∗) := lim←−

n

µ`n .

Let

Z` := lim←−
n

Z/`nZ =

{
(an) ∈

∞∏
n=1

Z
`nZ
| an+1 ≡ an (mod `n)

}
be the ring of `-adic integers.

Proposition 2.50 (Structure of Tate Module of K). If p = Char(K), then

T`(K
∗) ∼=

{
Z` if ` 6= p,

{0} if ` = p.

where the isomorphism is of abelian groups.

Proof. Let ` 6= p. We have the isomorphism µ`n ∼= Z/`nZ for all n ≥ 0. Let
{ζn} be a compatible set of generators of µ`n , i.e. ζn−1 = ζ`n. We have the
following commutative diagrams for all n ≥ 0.

T`(K
∗)

Z`

µ`n µ`n−1

f

πn πn−1

φn φn−1

a7→a`
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Here πn is the projection map and φn : 1 7→ ζn. This ensures the unique
homomorphism f : T`(K

∗) → Z` defined by (ζann ) 7→ (an). The map f is
easily seen to be an isomorphism.

For ` = p, we have µpn = {1} for all n ≥ 0, implying Tp(K
∗) ∼= {0}.

We know that GK/K = Gal(K/K) acts on T`(K
∗) as follows,

σ · (ζann ) = (σ(ζn)an).

This action induces a representation GK/K −→ Aut(T`(K
∗)). By the iso-

morphism f , we get the representation

χ` : GK/K −→ GL1(Z`) ↪→ GL1(Q`).

The degree 1 representation χ` is called the `-adic cyclotomic character over
K
∗
.
When K = Q, χ` is surjective. For any (mn) ∈ Z∗` , we have σn ∈ GQ such

that σn(ζn) = ζmn
n for all n. Let

B(τ, F ) = {σ ∈ GQ | σ|F = τ |F}

denote a basic open ball around τ in GQ. Hence, we have a

σ ∈
⋂
n≥1

B(σn,Q(ζn)),

such that χ`(σ) = (mn).

Proposition 2.51. The representation χ` is unramified at primes p 6= `.
Moreover, if σp is a Frobenius substitution for the prime p, then

σ(ζn) = ζχ`(σ)
n , for all σ ∈ GQ, ζn ∈ µ`n (2.4)

and χ(σp) = p. (2.5)

Proof. According to Remark B.8, χ` is unramified at a prime p if and only if p
is unramified in the fixed field of kerχ`. In this case, kerχ` = Q(∪nµ`n). We
know that only the prime ` ramifies in kerχ`, implying that χ` is unramified
at primes p 6= `.

The equations (2.4) and (2.5) follow from definitions.
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2.5.2 Tate Module of an Elliptic Curve

Let ` be a prime. For n ≥ 1, we have the natural maps

φnn−1 : E[`n]→ E[`n−1], P 7→ [`]P.

Definition 2.52. The Tate Module of an elliptic curve E, denoted by T`(E),
is defined to be the projective limit of the inverse system (E[`n], {φnn−1 | n ≥
1}). i.e.

T`(E) := lim←−
n

E[`n].

The next proposition, similar to that of Proposition 2.50, gives the struc-
ture for a Tate module of an elliptic curve.

Proposition 2.53 (Structure of Tate Module of E). If p = Char(K), then

T`(E) ∼=

{
Z` × Z` if ` 6= p,

{0} or Zp if ` = p.

where the isomorphism is of abelian groups.

Proof. We know that

E[`n] ∼=

{
Z/`nZ× Z/`nZ if ` 6= p,

{0} or Z/pnZ if ` = p.

The proof then is similar to Proposition 2.50.

Remark 2.54. Let us from now on denote ` for a prime not equal to the
characteristic of K.

The action of GK/K on E[`n] induces an action on T`(E). This gives rise to
a representation GK/K −→ Aut(T`(E)), which in turn gives a representation

ρ` : GK/K −→ GL2(Q`).

2.5.3 Tate Modules and Isogenies

Let φ : E1 → E2 be an isogeny. As it is a homomorphism, we have the
induced map from E1[`n] → E2[`n] respectively. This in turn induces a
homomorphism

φ` : T`(E1)→ T`(E2), (Pn) 7→ (φ(Pn)).
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Proposition 2.55. The map

hom(E1, E2)→ hom(T`(E1), T`(E2)), φ 7→ φ`

is injective.

Proof. The above map is a homomorphism, hence it is enough to show that
φ` = 0 implies φ = 0.

We have φ` = 0 implies φ(Pn) = 0 for all Pn ∈ E[`n] and for all n ≥ 0.
This says that

E[`n] ⊆ kerφ.

We have [`n] : E1 → E1 to be separable for all n ≥ 0 and we have λn : E1 →
E2 such that

λn ◦ [`n] = φ.

Assume φ is non-constant, implying deg(φ) <∞, we have

deg(φ) = deg(λn ◦ [`n]) ≥ deg[`]n = `2n for all n ≥ 1.

As the right hand side is unbounded, we get a contradiction. Therefore,
φ = 0.

Remark 2.56. We can also prove Proposition 2.55 as follows. Assuming
φ is non-constant, for Q ∈ E2[`] we have P ∈ E1 such that φ(P ) = Q.
As ord(Q) = ` divides ord(P ), we have ord(P ) = `rk for some r ≥ 1 and
gcd(`, k) = 1. Taking P ′ = [k]P and Q′ = [k]Q, we have

Q′ = φ(P ′) = 0 (as P ′ ∈ E[`r] ⊆ kerφ).

We get the desired contradiction.

We have a more stronger theorem than Proposition 2.55. Before going
into that, let us look at some preliminaries.

We know that hom(E1, E2) is a torsion-free Z-module. For S = Z− {0},
we have the following maps

hom(E1, E2) ↪→ hom(E1, E2)S−1 ∼=−−−−→ hom(E1, E2)⊗Q

where the tensor product is between Z-modules. Therefore, one can regard
hom(E1, E2) as a subgroup of hom(E1, E2)⊗Q by the map φ 7→ φ⊗ 1. For
a sub-module M of hom(E1, E2), we define

Mdiv := {φ ∈ hom(E1, E2) | [m] ◦ φ ∈M for some m ≥ 1}.
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We see that Mdiv = (M ⊗Q)∩hom(E1, E2) as a subgroup of M ⊗Q. To see
this, we have the map

Mdiv → (M ⊗Q) ∩ hom(E1, E2), φ 7→ ([m] ◦ φ)⊗ 1/m.

It is seen that, as φ ⊗ 1 = ([m] ◦ φ) ⊗ 1/m, the map is well defined. For
ψ ⊗ p/q ∈ (M ⊗Q) ∩ hom(E1, E2), we have

ψ ⊗ p/q = φ⊗ 1

for some φ ∈ hom(E1, E2). From this we have [p] ◦ ψ = [q] ◦ φ. Hence,
φ ∈Mdiv and

ψ ⊗ p/q = ([q] ◦ φ)⊗ 1/q.

This shows surjectivity, and the injectivity follows by definition.

Proposition 2.57. If M is finitely generated, then Mdiv is finitely generated.

Proof. We can extend the degree map deg : hom(E1, E2) −→ Z to the map

deg : hom(E1, E2)⊗Q −→ Q, φ⊗ p/q 7→ (p/q)2deg(φ).

The fact that this is well defined follows immediately from definitions (Ref.
2.58). This can be extended to the map

deg : hom(E1, E2)⊗ R→ R, φ⊗ r 7→ r2deg(φ)

on the real vector space hom(E1, E2) ⊗ R. The restriction of this map to
M⊗R gives us a quadratic form on the finite dimensional vector space. As a
quadratic form is given by a homogeneous quadratic polynomial, the degree
map is continuous on M ⊗ R.

As M is a finitely generated subgroup of a torsion-free group, M is free.
Hence, we have the inclusion M ⊗ Q ↪→ M ⊗ R induced by the inclusion
Q ⊂ R. By this inclusion, we can look at Mdiv as a subset of M ⊗ R.

For ψ ⊗ 1 ∈Mdiv, consider the open set

Uψ = {φ⊗ 1 ∈Mdiv | deg(φ− ψ) < 1} = deg−1(−∞, 1) ∩Mdiv.

This is just the singleton {ψ⊗ 1}. Hence, Mdiv is a discrete subgroup of the
finite dimensional vector space M ⊗ R. Hence, it is finitely generated.

Remark 2.58. We look at the extension of the degree map to M ⊗Q. For

φ⊗ p/q = ψ ⊗ r/s
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we have [sp] ◦ φ = [rq] ◦ ψ. Therefore,

deg(φ⊗ p/q) =
p2

q2
deg(φ) =

r2

s2
deg(ψ) = deg(ψ ⊗ r/s).

This will also be a a quadratic form on the vector space hom(E1, E2)⊗Q as
follows:

qs(φ⊗ p/q + ψ ⊗ r/s) = ([p]φ+ [r]ψ)⊗ 1,

implies that we have

(qs)2deg(φ⊗ p/q + ψ ⊗ r/s) = deg([ps]φ+ [qr]ψ)

= p2s2deg(φ) + q2r2deg(ψ) + pqrs〈φ, ψ〉.

This gives

deg(φ⊗ p/q + ψ ⊗ r/s)− deg(φ⊗ p/q)− deg(ψ ⊗ r/s) = pr/qs〈φ, ψ〉.

Hence, the degree map is a quadratic form.

Now we are ready to prove the stronger theorem. Let hom(T`(E1), T`(E2))
denote the set of Z`-linear maps from T`(E1) into T`(E2). For an α = (an) ∈
Z`, we have the natural action on hom(T`(E1), T`(E2)),

(α · ψ)(Pn) = ψ(anPn).

Theorem 2.59. The map

hom(E1, E2)⊗ Z` → hom(T`(E1), T`(E2)), φ⊗ α 7→ α · φ`
is an injection.

Proof. Let φ =
k∑
i=1

φi ⊗ αi be in the kernel of that map. i.e. φ` :=
k∑
i=1

αi ·

(φi)` = 0. Let M be the subgroup of hom(E1, E2) generated by {φi}ki=1 and
Mdiv be generated by {ψj}sj=1. As they are subgroups of a torsion-free group,

M and Mdiv are free. We have unique βj’s ∈ Z` such that

φ =
s∑
j=1

ψj ⊗ βj.

So we have
k∑
j=1

βj · (ψj)` = 0. Let b1, · · · , bs be the Z/`nZ components of

β1, · · · , βs respectively. For

φn =
s∑
j=1

[bj] ◦ ψj ∈Mdiv
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we have E[`n] ⊆ kerφn implying that there exists a λ : E1 → E2 such that

λ ◦ [`n] = [`n] ◦ λ = φn.

This says that λ ∈ Mdiv and hence we have the unique decomposition λ =
[c1] ◦ ψ1 + · · ·+ [cs] ◦ ψs. This says,

[`nc1] ◦ ψ1 + · · ·+ [`ncs] ◦ ψs = [`n] ◦ λ = φn = [b1] ◦ ψ1 + · · ·+ [bs] ◦ ψs.

As {ψj} forms a basis, we have bj = `ncj, implying bj ≡ 0 (mod `n). As n
was arbitrary, we have βj = 0 for all j = 1, · · · , s. Hence, φ = 0.

Corollary 2.60. The rank of hom(E1, E2) as a free Z-module is finite and
is bounded by 4.

Proof. From the previous theorem, we have the injection of Z`-modules

hom(E1, E2)⊗ Z` → hom(T`(E1), T`(E2)).

As T`(E1), T`(E2) are isomorphic to Z` × Z`, we have a (non-canonical)
isomorphism between hom(T`(E1), T`(E2)) and Aut(Z` × Z`). The rank of
hom(T`(E1), T`(E2)) as Z`-module is 4 by the following isomorphisms,

hom(T`(E1), T`(E2)) −→ Aut(Z` × Z`) ∼= M2(Z`) ∼= Z` × Z` × Z` × Z`.

As hom(E1, E2) is torsion-free, we have

rankZ hom(E1, E2) = rankQ hom(E1, E2)⊗Q

and
(hom(E1, E2)⊗Q)⊗Q Q`

∼= (hom(E1, E2)⊗ Z`)⊗Z`
Q`.

Therefore, we have,

rankZ hom(E1, E2) = rankQ hom(E1, E2)⊗Q
= rankZ`

hom(E1, E2)⊗ Z`
≤ rankZ`

hom(T`(E1), T`(E2))

= 4.

Remark 2.61. In particular, we have rankZEnd(E) ≤ 4. This will help us
later in studying the structure of the endomorphism ring.
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2.6 Weil Pairing

Let E/K be an elliptic curve and m ∈ Z be an integer such that m 6= 0 in
K. We know that

E[m] ' Z
mZ
× Z
mZ

. (E[m] is a free Z/mZ-module of rank 2)

By a pairing on a free module M , we just mean a (nice) map on M ×M .
One of the basic pairings on E[m] is the determinant pairing. For a Z/mZ-
basis {T1, T2} of E[m], we have the determinant map

det : E[m]× E[m]→ Z/mZ, det(aT1 + bT2, cT1 + dT2) = ad− bc.

It is easy to see that this pairing is independent of the basis for E[m]. This
pairing need not commute with the action of the Galois group GK/K . i.e.
det(P σ, Qσ) need not be same as det(P,Q)σ. Here, the action of GK/K on
Z/mZ is the identity action.

Examples 2.62. Let Char(K) 6= 2 and E : y2 = x3 − 2. Let ei = 21/3ωi for
i = 0, 1, 2 and where ω is a primitive 3rd root of unity. For Ti = (ei, 0), we
have E[2] = {O, T0, T1, T2}. Consider an element σ ∈ GK/K such that

σ : 21/3 7→ 21/3ω, ω 7→ ω2.

Let {T0, T1} be a basis for E[2], we have

det(T0, T2) = det(T0, T0 + T1) = 1

det(T σ0 , T
σ
2 ) = det(T1, T0) = −1.

Hence, det(T0, T2) 6= det(T σ0 , T
σ
2 ).

2.6.1 The Weil Pairing on the Tate Module

We will first define the Weil em-pairing on E[m] = ker[m], which commutes
with the action of the Galois group (Galois invariant). Let us make some
observations before the definition.

We know that a divisor D =
∑
P

nP (P ) ∈ Div(E) is principal if and only

if ∑
P

nP = 0 and
∑
P

[nP ]P = 0.

Let T ∈ E[m], we have an f ∈ K(E) such that

div(f) = m(T )−m(O).
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Similarly, for T ′ such that T = [m]T ′, we have a g ∈ K(E) such that

div(g) = [m]∗(T )− [m]∗(O)

=
∑

R∈E[m]

(T ′ +R)− (R).

We also see that [m]∗f = f ◦ [m] and gm have the same divisor. Hence, we
can assume, by multiplying f by a constant, [m]∗f = gm.

Let S ∈ E[m] and X ∈ E be any point, we have

gm(X + S) = (f ◦ [m])(X + S) = f([m]X + [m]S) = (f ◦ [m])(X) = gm(X).

Hence, we have the rational function (g ◦ τS)/g to have a finite image, the
mth roots of unity in K. Therefore,

g ◦ τS
g

: E −→ P1

as a rational function is not surjective, hence a constant.

Definition 2.63. Let µm denote the multiplicative group of mth roots of
unity in K. For T, S ∈ E[m], we define the Weil-em Pairing by the map

em : E[m]× E[m]→ µm, (S, T ) 7→
(
g ◦ τS
g

)
(X) =

g(X + S)

g(X)
.

Remark 2.64. Note that the selection of g depends on the choice of T . Let
us call that g is wrt T .

Proposition 2.65 (Properties of the Weil-em pairing).

(a) Bilinearity:

em(S, T1 + T2) = em(S, T1)em(S, T2)

em(S1 + S2, T ) = em(S1, T )em(S2, T ).

(b) For any S, T ∈ E[m],

em(T, T ) = 1 and em(S, T )−1 = em(T, S).

(c) It is non-degenerate: If em(T, S) = 1 for every S ∈ E[m], we have
T = O.

(d) It is Galois Invariant:

em(T σ, Sσ) = em(T, S)σ for all σ ∈ GK/K .
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(e) Compatibility: For S ∈ E[mn] and T ∈ E[m], we have

emn(S, T ) = em([n]S, T ).

Proof. (a) Let g be wrt T1 + T2, and gi be wrt Ti for i = 1, 2. We know that

(T1 + T2) + (O) = (T1) + (T2) + div(h)

for some h ∈ K(E). This implies

(T1 + T2)− (O) = ((T1)− (O)) + ((T2)− (O)) + div(h)

and hence,

[m]∗((T1 +T2)− (O)) = [m]∗((T1)− (O))+[m]∗((T2)− (O))+[m]∗div(h).

By definition, we have

div(g) = div(g1) + div(g2) + div([m]∗h).

Therefore, g/g1g2 = h ◦ [m]1. We have

em(S, T1 + T2) =
g(X + S)

g(S)

=

(
g1(X + S)

g1(X)

)(
g2(X + S)

g2(X)

)(
[m]∗h(X + S)

[m]∗h(X)

)
.

We have

[m]∗h(X + S)

[m]∗h(X)
=
h([m]X + [m]S)

h([m]X)
= 1 (as S ∈ E[m])

hence,
em(S, T1 + T2) = em(S, T1)em(S, T2).

The other equation is fairly simple. Let g be wrt T , we have

em(S1 + S2, T ) =
g(X + S1 + S2)

g(X)
=
g(X + S1 + S2)

g(X + S1)

g(X + S1)

g(X)

= em(S1, T )em(S2, T ).
1 We have left out a scalar multiple here as it doesn’t trouble us.
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(b) We have f ∈ K(E) such that div(f) = m(T ) −m(O). For Q ∈ E, Let
τQ denote the usual translation-by-Q map. We have

div

(
m−1∏
n=0

τ ∗[n]Tf

)
=

m−1∑
n=0

τ ∗[n]Tdiv(f)

=
m−1∑
n=0

τ ∗[n]T (m(T )−m(O))

= m

[
m−1∑
n=0

([n]T )− ([−n− 1]T )

]
= 0.

This implies
m−1∏
n=0

f ◦ τ[n]T is a constant. So, for a T ′ such that [m]T ′ = T ,

we have
m−1∏
n=0

f ◦ τ[n]T =
m−1∏
n=0

f ◦ [m] ◦ τ[n]T ′ =
m−1∏
n=0

gm ◦ τ[n]T ′

=

(
m−1∏
n=0

g ◦ τ[n]T ′

)m

= constant.

Therefore,
m−1∏
n=0

g ◦ τ[n]T ′ is a constant. From this, we get

m−1∏
n=0

(g ◦ τ[n]T ′)(X) =
m−1∏
n=0

(g ◦ τ[n]T ′)(X + T ′).

On simplifying, we have

g(X)g(X + T ′) · · ·g(X + [m− 1]T ′)

= g(X + T ′) · · · g(X + [m− 1]T ′)g(X + T ).

By cancellation, we have

em(T, T ) =
g(X + T )

g(X)
= 1.

To prove the next part, we see that for any S, T ∈ E[m], we have

1 = em(S + T, S + T )

= em(S, S)em(S, T )em(T, S)em(T, T ) (due to bilinearity)

= em(S, T )em(T, S).
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(c) We have em(S, T ) = g(S +X)/g(X) = 1 for all S ∈ E[m]. This implies

(τ ∗Sg)(X) = g(X + S) = g(X), implying that τ ∗Sg = g ∀S ∈ E[m].

By the fact that m 6= 0 in K, we have [m] to be a separable map. This
implies that K(E) is Galois over [m]∗K(E) and the Galois group is the
set {τ ∗S | S ∈ E[m]}. Hence, as g is fixed by every element of the Galois
group, we have g ∈ [m]∗K(E). Let’s say g = [m]∗h for some h ∈ K(E).
We have

[m]∗div(h) = div(g) = [m]∗((T )− (O))

implying that
div(h) = (T )− (O).

We have seen before that this can only happen if T = O.

(d) For a σ ∈ GK/K , we have

div(gσ) = (div(g))σ = [m]∗((T σ)− (O)).

Hence,

em(Sσ, T σ) = gσ(Xσ + gσ)/gσ(Xσ) = (g(X + S)/g(X))σ = em(S, T )σ.

(e) Let div(g1) = [mn]∗((T )− (O)) and div(g2) = [m]∗((T )− (O)), we have

div(g1) = [n]∗div(g2), i.e. g1 = λ(g2 ◦ [n]) for some λ ∈ K.

For S ∈ E[mn], we have

emn(S, T ) =
g1(X + S)

g1(X)
=
g2([n]X + [n]S)

g2([n]X)
= em([n]S, T ).

Let φ : E1 → E2 be a map between elliptic curves and φ̂ be its dual. Let
us recall that

φ̂ = τ1 ◦ φ∗ ◦ τ2 : E2 → E1

as homomorphisms, where

τ1 : Div0(E1)→ E1,
∑
Q

nQ(Q) 7→
∑
Q

[nQ]Q

τ2 : E2 → Div0(E2), P 7→ (P )− (O)

and φ∗ : Div0(E2)→ Div0(E1) is the induced homomorphism by φ.
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We have also seen that ker τ1 is the subgroup of principal divisors. Hence,
for a point Q ∈ E2, we have

τ1((φ̂(Q))− (O)) = φ̂(Q) = τ1(φ∗(τ2(Q))) = τ1(φ∗((Q)− (O))).

Hence, there exists an h ∈ K(E1) such that

(φ̂(Q))− (O) = φ∗((Q)− (O)) + div(h).

By these observations, we prove the next theorem involving the pairings in
E1[m] and E2[m].

Theorem 2.66. Let φ : E1 → E2 be a map between two elliptic curves and
φ̂ be its dual. For S ∈ E1[m] and T ∈ E2[m] , we have

em(S, φ̂(T )) = em(φ(S), T ).

Proof. Let g ∈ K(E1) and ĝ ∈ K(E2) be such that

div(g) = [m]∗((T )− (O)) and div(ĝ) = [m]∗((φ̂(T ))− (O)).

From the discussion before, we have

[m]∗((φ̂(T ))− (O)) = φ∗([m]∗((T )− (O))) + div([m]∗h),

hence,
div(ĝ) = div(φ∗g) + div([m]∗h).

From this, we get ĝ = λ(φ∗g)(h ◦ [m]) for some scalar λ ∈ K.
We have

em(φ(S), T ) =
g(φ(S) + φ(X))

g(φ(X))
=

(φ∗g)(X + S)

(φ∗g)(X)

=
ĝ(X + S)

ĝ(X)
· (h ◦ [m])(X)

(h ◦ [m])(X + S)

= em(S, φ̂(T )).

We now extend the pairings on E[`n] to the Weil pairing on the Tate
module T`(E). Let S = (Sn) and T = (Tn) be points in T`(E). Define
e : T`(E)× T`(E)→ T`(K) by

e(S, T ) = (e`n(Sn, Tn)).
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Recall that
T`(K) := lim←−

n

µ`n .

To see that the pairing is well defined, we show

e`n(Sn, Tn) = e`n+1(Sn+1, Tn+1)`,

using bi-linearity and the compatibility conditions. We have,

e`n+1(Sn+1, Tn+1)` = e`n+1(Sn+1, [`]Tn+1)

= e`n([`]Sn+1, [`]Tn+1)

= e`n(Sn, Tn).

The properties of the Weil pairing is same as that of Proposition 2.65.

2.7 Structure of the Endomorphism Ring

In this section we look at what the endomorphism ring of an elliptic curve
E looks like. First we give a general description in Char(K) = 0 and then
prove that there are only 3 possibilities. They are,

� An order in Q.

� An order in an imaginary quadratic field.

� An order in a quaternion algebra.

2.7.1 The Invariant Differential

We look at some properties of the invariant differential ω attached to an
elliptic curve and then in the end prove that the endomorphism ring End(E)
is an integral domain, when the base field is of characteristic 0.

For a Weierstrass equation

E : y2 + a1xy + a3 = x3 + a2x
2 + a4x+ a6

of the elliptic curve E, we have the attached invariant differential

ω =
dx

2y + a1x+ a3

.

We know justify the name invariant.
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Proposition 2.67. Let E be an elliptic curve and τQ denote the translation-
by-Q map. We have

τ ∗Qω = ω.

Remark 2.68. Let us recall the push forward of a differential by a map φ :
C1 → C2 between curves. For gdf ∈ Ω(C1), we define φ∗(gdf) = (φ∗g)d(φ∗f).
One of the properties we will use in the next proof is that

φ∗(div(gdf)) = div(φ∗gdf).

Proof. Let Q ∈ E. As Ω(E) is a 1-dimensional K(E) vector space, we have
an fQ ∈ K(E) such that

fQ =
τ ∗Qω

ω
=

(
d(τ ∗Qx)

dx

)(
2y + a1x+ a3

2(τ ∗Qy) + a1(τ ∗Qx) + a3

)
.

So, for P ∈ E, we have

fQ(P ) =
d(τ ∗Qx)

dx
(P )

(
2y(P ) + a1x(P ) + a3

2y(P +Q) + a1x(P +Q) + a3

)
.

We also have

div(fQ) + div(ω) = div(τ ∗Qω) = τ ∗Q(div(ω)).

As div(ω) = 0, we have fQ to be a constant map. For a fixed P ∈ E, as
fQ(P ) is a rational function in x, y, τ ∗Qx and τ ∗Qy, we have g(Q) := [fQ(P ), 1]
to be a rational map. As g misses [0, 1] and [1, 0], g is a constant map. Hence,
g(Q) = g(O) = 1, implying τ ∗Qω = ω.

The next theorem is the theorem required to prove that End(E) is an
integral domain, when Char(K) = 0. It also helps us to see that for an
m ∈ Z which is co-prime to the characteristic of K, the map [m] : E → E is
separable.

Theorem 2.69 (cf. [Sil06], Theorem III.5.2.). Let E1, E2 be elliptic curves
and ω be an invariant differential 2 for E1. For isogenies φ, ψ ∈ Hom(E1, E2),
we have

(φ+ ψ)∗ω = φ∗ω + ψ∗ω.

2 Note that the invariant differential is for a Weierstrass equation and an elliptic curve
can have more than one Weierstrass equation.
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Corollary 2.70. For an m ∈ Z, we have

[m]∗ω = mω.

Moreover, [m] is separable if and only if m 6= 0 in K.

Corollary 2.71. For an element φ ∈ End(E), we have aφ ∈ K such that

φ∗ω = aφω.

Moreover, we have a homomorphism

End(E)→ K, φ 7→ aφ.

More specifically, if Char(K) = 0, then the above map is an inclusion (hence,
implying End(E) is commutative).

Proof. We have an aφ ∈ K(E) such that

φ∗ω = aφω.

Similarly as before,

div(aφ) = div(φ∗ω)− div(ω)

= φ∗(0)− 0

= 0.

Implying aφ ∈ K. The map

End(E) −→ K, φ 7→ aφ

is a homomorphism due to Theorem 2.69. If φ is in the kernel, we see that
φ∗ω = 0, implying that φ is inseparable. If Char(K) = 0, as the [0] map is
the only inseparable map, implying that End(E) ↪→ K.

2.7.2 A Special Ring Structure

From our earlier discussions, we have the following structure of the endomor-
phism ring of an elliptic curve.

• It is a ring with characteristic 0 with no zero-divisors.

• It is a free Z-module of rank at most 4.
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• There is a dual map (sometimes called as an anti-involution)

End(E)→ End(E), φ 7→ φ̂

with properties,

– For a φ ∈ End(E), we have φ̂φ ∈ Z≥0. (Note that Z here is the
isomorphic image of {[m] ∈ End(E) | m ∈ Z}.) We also have

φ̂φ = 0 if and only if φ = 0.

– For φ, ψ ∈ End(E),

φ̂+ ψ = φ̂+ ψ̂ and φ̂ψ = ψ̂φ̂.

We see that any ring with the above properties can only have three possibil-
ities as we stated at the start of this section.

Definition 2.72. Let K be a finitely generated algebra (not necessarily
commutative) over Q. A subring R of K is called as an order in K if,

(a) R is a finitely generated Z-module.

(b) R⊗Q ∼= K.

Example 2.73. For a number field K/Q, the ring of integers OK in K is an
order in K.

For the number field K = Q(
√
−D), where D > 0, we see that R =

Z + nOK is an order in K for n ∈ N. If OK = Z + αZ, then R = Z + nαZ.

Example 2.74. Let K = Mn(Q) be the set of n× n matrices with rational
entries. The subring Mn(Z) is an order in K.

Definition 2.75. A quaternion algebra over Q is the algebra Q(α, β) such
that

α2, β2, (αβ)2 < 0 and αβ = −βα.

The next general theorem will help us characterize End(E).

Theorem 2.76. Let R be a ring with the following properties.

(a) It is a ring with characteristic 0 with no zero-divisors and 1 ∈ R.

(b) It is a free Z-module of rank at most 4.

(c) There is a dual map a 7→ â (sometimes called as an anti-involution)
satisfying,
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• For a ∈ R, we have âa ∈ Z≥0 and âa = 0 if and only if a = 0.

• For a ∈ R, we have

̂̂a = a, âb = b̂â, â+ b = â+ b̂

and for a ∈ Z, we have â = a.

Then, R is one of the following.

(i) An order in Q.

(ii) An order in an imaginary quadratic field.

(iii) An order in the quaternion algebra.

Proof. It is enough to show that K = R ⊗ Q is either Q or an imaginary
quadratic field or a quaternion algebra.

We can extend the anti-involution to K by defining

φ̂⊗ a = φ̂⊗ a.

For ψ = φ⊗ a, we have

ψ̂ψ =
(
φ̂⊗ a

)
(φ⊗ a) = φ̂φ⊗ a2 = 1⊗ (φ̂φ)a2.

Consider the map N : K → Q defined by ψ 7→ (φ̂φ)a2. For ψ ∈ K, we have

N(1− ψ) = 1− (ψ + ψ̂) +N(ψ).

This ensures the map T : K → Q defined by ψ 7→ ψ̂ + ψ.
For a non-zero ψ ∈ K such that T (ψ) = 0, we have ψ̂ = −ψ. This implies

ψ2 = −N(ψ) < 0.

If K = Q, we are done. If not, for α ∈ K \Q, we have T (α− T (α)) = 0.
Hence, by replacing α by α − T (α), we take α such that T (α) = 0. This
implies α2 < 0 and hence, Q(α) ⊆ K.

If K = Q(α), we are done. If not, then there is a β ∈ K \Q(α) such that
T (β) = 0. We also want T (αβ) = 0, so we consider β′ = aα + bβ ∈ Q(α, β)
such that T (αβ′) = 0. By solving the two equations, we get

β′ = −bT (αβ)

2α2
α + bβ.
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So, by taking β instead of β′, we have Q(α, β) ⊆ K. As K is a vector
space of dimension ≤ 4, it is enough to show that {1, α, β, αβ} is a linearly
independent set. Let

a+ bα + cβ + dαβ = 0.

By applying T both sides, we have a = 0. By multiplying by α both sides,
we have

bα2 + cβα = dα2β.

As β 6∈ Q(α), we have d = 0. By the same argument, b = c = 0. Hence,
K = Q(α, β), a quaternion algebra.

Corollary 2.77. The Endomorphism ring of an elliptic E, End(E), is either
an order in Q or an imaginary quadratic field or a quaternion algebra. If
Char(K) = 0, then it is only the first two.

Proof. This follows from the above theorem and by the fact that End(E) is
commutative when Char(K) = 0.

Examples 2.78.

1. The elliptic curve E : y2 = 4x3 + x + 1 over C has no complex multi-
plication as it’s j-invariant, j = 243/35, is not an algebraic integer.

2. Consider the elliptic curve E : y2 = x3−x over C. We have the isogeny

[i] : (x, y) 7→ (−x, iy).

As [i]2 : (x, y) 7→ (x,−y) and −(x, y) = (x,−y), we have [i]2 = [−1].
Hence,

End(E) ∼= Z(i).

3. For q = pr, let K = Fq be a finite field and E be an elliptic curve over
K. We have the Frobenius endomorphism (x, y) 7→ (xp, yp) of degree
p. This is not a multiplication-by-m map for any m as the latter has
degree m2. Hence, End(E) 6= Z.

4. Let K = Fq and E : y2 = x3 − x. Let i denote the square root of
−1 in Fq, we have the map (as in Example 2) [i] : E → E defined by
(x, y) 7→ (−x, iy). If p ≡ 3 (mod 4), then we have End(E) 6= Z[i], as
the Frobenius endomorphism φp is not there in Z[i]. This is seen as
follows.

If φp = [a] + [b][i], then φ̂p = [a]− [b][i]. This implies,

[p] = [deg φp] = φ̂pφp = ([a]− [b][i])([a] + [b][i]) = [a2 + b2].
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Hence, p = a2 + b2. By Fermat’s two square theorem, we have p ≡
1 (mod 4). Hence, for p ≡ 3 (mod 4), the End(E) is an order in a
quaternion algebra.



3. THE CHEBOTAREV DENSITY
THEOREM

The Chebotarev Density Theorem is a theorem about the density of certain
primes. More precisely, given a finite Galois extension E/K with Galois
group G, the theorem states that the set of primes whose Frobenius substi-
tutions lie in a conjugacy class C of G are equally distributed.

In this section, we first look at the classical Chebotarev Theorem for
finite Galois extensions and later move on to the case of an infinite Galois
extension whose Galois group is a compact `-adic Lie group. In the latter,
we find a bound for the the set {p ≤ x | σp ∈ C}, for a closed set C of G
which is stable under conjugation.

The reference for this section is §2 of [Ser81].

3.1 Effective Forms of the Theorem of

Chebotarev

3.1.1 The Theorem of Chebotarev

Let E/K be a finite Galois extension of number fields, an let G = Gal(E/K).
Let us stick to the following notations:

nE = [E : Q], nK = [K : Q],

n = [E : K] = nE/nK = |G|.

Let us recall that a place in a number field K is an equivalence class of ab-
solute values on K. Moreover, let ΣK denote the set of places corresponding
to non-archimedean absolute values. A place v ∈ ΣK corresponds (one-one)
to a prime ideal pv in OK . We denote Nv to be the norm of pv, Npv, in OE.

Recall that a prime ideal p of OK ramifies in E if there is a prime ideal P
in OE such that P2|p. Similarly, a place v of K ramifies in E if pv ramifies
in E. Let,

V (E/K) = {v ∈ ΣK | v ramifies in E}.
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Let v ∈ ΣK − V (E/K) and w ∈ ΣE be an extension of v (i.e. w|v).
Consider the exact sequence,

1 I(w/v) Gal(Ew/Kv) Gal(Fw/Fv) 1,

where Fv and Fw are the residue fields of Kv and Ew, I(w/v) is the inertia
group of w over v. As v is unramified in E, I(w/v) = 1 and hence we have
the isomorphism

Gal(Ew/Kv) ∼= Gal(Fw/Fv).

Define the Frobenius element of w to be the element σw ∈ Gal(Ew/Kv) such
that, under the above isomorphism, it maps the the Frobenius automorphism
in Gal(Fw/Fv). Therefore, it satisfies

σw(a) ≡ aNv mod pv.

If we take another place w′ lying above v, then σw and σw′ are conjugates.
We call an element or the whole conjugacy class as the Frobenius substitution
at v in E. We denote this conjugacy class or any other element of it by σv.

For a subset C of G, closed under conjugation, let

ΣC = {v ∈ ΣK − V (E/K) | σv ∈ C}.

Now we are ready to see the statement of the classical Chebotarev density
theorem which was first, conjectured by Frobenius, proved by Chebotarev.

Theorem 3.1. The density of the set ΣC in ΣK is |C|/|G|.
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To be precise, let πK(x) = #{v ∈ ΣK | Nv ≤ x} and πC(x) = #{v ∈
ΣC | Nv ≤ x}. According to the prime number theorem on K, we have

πK(x) ∼ x/ log x as x→∞. (3.1)

Saying that ΣC has density λ = |C|/|G| means that,

lim
x→∞

πC(x)/πK(x) = λ, (3.2)

In other words,

πC(x) = λx/ log x+ o(x/ log x) as x→∞. (3.3)

Theorem 3.1 says that the Frobenius substitutions are equally distributed
amongst the conjugacy classes of G.

Remark 3.2. Taking K = Q and E = Q(ζm), the m-th cyclotomic extension
of Q, and applying the Chebotarev density theorem for a conjugacy class {a+
mZ} with (a,m) = 1, we have a stronger version of the Dirichlet’s theorem
for primes in arithmetic progression. i.e. Given an arithmetic progression a+
mZ, where gcd(a,m) = 1, the density of primes in this arithmetic progression
is 1/φ(m).

3.1.2 An Effective Form of the Theorem

By an effective form, we mean giving a bound for the error term o(x/ log x) in
(3.3). The bound involves an exceptional root of the Dedekind zeta function
for E.

The Dedekind zeta function for E is the analytic (meromorphic) contin-
uation, also denoted ζE, of the function

ζE(s) =
∑

m⊆OE

Nm−s, Re(s) > 1,

to C. When E = Q, we have ζE(s) = ζ(s), the usual Riemann zeta function.
Let dE denote the absolute value of the discriminant of E. According to

Lemma 3 of [Sta74], we have the following theorem about real zeros of ζE.

Proposition 3.3. There is at most one real zero s > 0 such that,

1− s ≤ 1/(4 log dE).

If this zero exists, then denote it by β.
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The following theorem (cf. §2.2, [Ser81]) gives an effective form of the
Chebotarev Density Theorem due to Lagarias and Odlyzko. As before, let
C be a subset of G closed under conjugation and let |C̃| denote the number
of conjugacy classes in C.

Theorem 3.4. There exists absolute constants c1, c2, c3 > 0 such that∣∣∣∣πC(x)− |C|
|G|

Li(x)

∣∣∣∣ ≤ |C||G|Li(xβ) + c1|C̃|x exp (−c2n
−1/2
E log1/2 x) (3.4)

for all x ≥ 2 such that log x ≥ c3nE log2 dE.

In the above Theorem 3.4, by an absolute constant, we mean a constant
independent of E,K,C,G and x. Moreover, in (3.4), if there doesn’t exist a

real zero β, then we delete the term
|C|
|G|

Li(xβ).

Example 3.5. Consider K = Q and a conjugacy class C of G = Gal(E/Q).
If we assume (GRH), then β doesn’t exist. If it did exist, then β = 1/2,

implying that
log dE ≤ 1/2, i.e. dE ≤

√
e.

This implies dE = 1, i.e. E = Q. Now we know that the Riemann zeta
function ζ(s) doesn’t have a real positive root.

We have, ∣∣∣∣πC(x)− |C|
|G|

Li(x)

∣∣∣∣ ≤ c1x exp (−c2|G|−1/2 log1/2 x).

Remark 3.6. For an exceptional zero β < 1, we see that

Li(xβ) = O(x/(log x)2). (3.5)

To see (3.5), we note that Li(x) = x/ log x+O(x/(log x)2) and hence,

Li(xβ) =
xβ

β log x
+O(x/(log x)2).

As β < 1, we have
xβ

log x
= O(x/(log x)2),

hence proving (3.5). Hence, we have

πC(x) =
|C|
|G|

x

log x
+O(x/(log x)2). (3.6)
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Remark 3.7 (Effective form of the Theorem under (GRH)). According to
Serre [Ser81], Section §2.4, there exists an absolute constant c6 such that∣∣∣∣πC(x)− |C|

|G|
Li(x)

∣∣∣∣ ≤ c6
|C|
|G|

x1/2(log dE + nE log x). (3.7)

Let us now see a bound for πC(x) due to Lagarias-Montgomory-Odlyzko,
which will be used later in the proof of Theorem 3.9.

Proposition 3.8 (cf. §2.3, Theorem 3, [Ser81]). For a finite Galois extension
E/K with Galois group G, a subset C of G closed under conjugation and
discriminant dE, there exists absolute constants c4, c5 such that

πC(x) ≤ c4
|C|
|G|

Li(x) (3.8)

for x ≥ 3 such that

log x ≥ c5(log dE)(log log dE)(log log log 6dE). (3.9)

3.2 Chebotarev Like Theorem: `-adic case

Let G be a compact `-adic Lie group, C be a closed subset of G which is
stable under conjugation, and let E be an infinite Galois extension of K,
with Galois group G, unramified outside a finite set S ⊆ ΣK .

This set-up usually occurs when we have a Galois representation ρ : GK →
GLn(Q`), unramified outside a finite set, and the image of ρ is an open subset,
hence a submanifold, of the `-adic Lie group GLn(Q`). As GK is compact in
its Krull topology and the Galois representation is continuous, the image of
ρ, call it Gρ, is a compact `-adic Lie group. Moreover,

Gρ = Gal(Kρ/K), Kρ = fixed field of ker ρ.

Similarly as before, for a place v ∈ ΣK − S, we have the Frobenius
substitution (defined up to conjugacy) at v with respect to E/K. Let us
denote

ΣC = {v ∈ ΣK − S | σv ∈ C},
πC(x) = #{v ∈ ΣC | Nv ≤ x}.

The applications of the following Chebotarev like theorem are seen in the
sections on applications to modular forms and elliptic curves.
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Theorem 3.9 (cf. Theorem 10, [Ser81]). Let d be a real number such that
0 ≤ d < N and let dimM C ≤ d. Taking α = (N − d)/N , we have:

i)

πC(x) = O

(
Li(x)

ε(x)α

)
as x→∞, (3.10)

where,
ε(x) = log x(log log x)−2(log log log x)−1. (3.11)

ii) (Assuming GRH)

πC(x) = O

(
Li(x)

εR(x)α

)
as x→∞, (3.12)

where,
εR(x) = x1/2(log x)−2. (3.13)

Here, dimM C is the M -dimension of the closed subset C (cf. Appendix).

Corollary 3.10. For all ε > 0, we have

πC(x) = O(x/(log x)1+α−ε). (3.14)

and, under (GRH), we have

πC(x) = O(x1−α/2+ε). (3.15)

Proof of Corollary. It follows from the following facts,

Li(x) ∼ x/ log x,

ε(x)−1 = O((log x)−1+δ) for all δ > 0,

εR(x)−1 = O(x−1/2+δ) for all δ > 0.

Example 3.11 (Cyclotomic Extensions). Consider the `-adic cyclotomic
character,

χ` : GQ → Z∗` ,

induced by the action of GQ on T`(Q) = lim←−µ`n . If K` = Q(∪nµ`n) is the
unramified extension containing all the `n-th roots of unity, then kerχ` =
Gal(Q/K`) and

Gal(K`/Q) ∼= Z∗` . (*)
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As Z∗` is abelian, every conjugacy class is singleton. We also know that the
extension K` is unramified at all primes p 6= `. From the above notation, we
have SK = {`}.

For the Frobenius substitution σp ∈ Gal(K`/Q) at a prime p 6= `, we have

σp(ζn) = ζpn, for ζn ∈ µ`n .

For (an) ∈ Z∗` , let σp ∈ {(an)}, i.e. the image of σp under the above
isomorphism (*) is (an). Hence, we have

p ≡ an mod `n for all n.

When we apply Theorem 3.9 in this set-up, for the conjugacy class C =
{(an)}, we have α = 1 and

πC(x) = O(Li(x)/ε(x)) as x→∞.

Moreover, from Corollary 3.10, we get

πC(x) = O(x/(log x)2−ε).

3.2.1 Proof of Theorem 3.9

Let g be the Lie algebra of G. We have the logarithm map logG : G → g,
which is a local isomorphism. Moreover (cf. [Ser81] §4.2) we have an open
normal subgroupG(0) ofG and a Z`-lattice g(0) such that logG : G(0)→ g(0)
is an isomorphism of `-adic Lie groups.

Define g(n) = `ng(0) and

G(n) = {g ∈ G(0) | logG g ∈ g(n)} = log−1
G (g(n)).

For an h ∈ G, g ∈ G(0), we have

hgnh−1 = (hgh−1)n.

As G(0) is normal, G(n) is also normal in G. From the fact that Z` is open
in Q`, we have g(n) to be an open subset of g. Hence, the group G(n) is an
open normal subgroup of G.

Let us define Gn = G/G(n), we have

|Gn| = [G : G(0)][G(0) : G(n)].

By the logG map, we have a bijection

G(0)/G(n)→ g(0)/g(n).
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Hence, [G(0) : G(n)] = |g(0)/g(n)| = `nN . Call [G : G(0)] = a, we have

Gn = a`nN . (3.16)

Let Cn = {c+G(n) | c ∈ C} be the image of C under the projection G→ Gn.
By the hypothesis dimM(C) ≤ d, we have

|Cn| = O(`nd) as x→∞.

Hence, using (3.16), we have

|Cn|/|Gn| = O(1/|Gn|α) where α = (N − d)/N. (3.17)

From the fundamental theorem of infinite Galois theory, as G(n) is closed (as
it is open) in G, we have a finite Galois extension En/K such that its Galois
group is Gn. Note that, the map G→ Gn is just the restriction-to-En map,
with kernel G(n).

Lemma 3.12. We have the inequality πC(x) ≤ πCn(x).

Proof. For v ∈ ΣC , we have

σv(a) ≡ aNv mod P, , for all a ∈ OE

where P is the prime in E above pv. Therefore, by restricting σv to En, we
have

σv,n(a) := σv|En(a) ≡ aNv mod Pn, for all a ∈ OEn

where Pn is the prime in En above pv. Hence, σv,n is a Frobenius substitution
at v in En. Moreover, σv,n ∈ Cn as it is the image of σv under the restriction
map G→ Gn.
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Proof of (i):
Our aim is to find a suitable n and use Proposition 3.8 to the finite Galois

extension En.
Let b ∈ R such that bc5nk < 1. If x is large enough, there exists a unique

n = n(x) such that
b`−Nε(x) < |Gn| ≤ bε(x). (3.18)

By calculation, such an n = log(a−1bε(x))/N log `.

Proposition 3.13. For such an n, we have

log x ≥ c5(log dEn)(log log dEn)(log log log 6dEn).

Proof. According to Equation (76) of [Ser81], we have

log dEn ≤ (nK + o(1))|Gn| log |Gn|.

From (3.18), we have

log dEn ≤ (nK + o(1))bε(x) log ε(x)

≤ (nK + o(1))b log x(log log x)−1(log log log x)−1.

Now taking log both sides in the above inequality, we have

log log dEn ≤ log((nKb+ o(1))) + (log log x) + (log log log x) + (log log log log x)

= (log log x)(1 + o(1)).

Similarly, we get

log log log 6dEn ≤ (1 + o(1))(log log log x).

Multiplying them out, we have

c5 log dEn(log log dEn)(log log log 6dEn) ≤ (c5nKb+ o(1)) log x.

≤ log x.

The last inequality follows from the fact that c5nKb < 1 and the fact that
we can choose and x large such that c5nKb+ o(1) ≤ 1.

Therefore, for such an x, we have

πC(x) ≤ πCn(x) ≤ c4
|Cn|
|Gn|

Li(x), (3.19)
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for an absolute constant c4 as in Proposition 3.8. Hence,

πC(x) = O

(
|Cn|
|Gn|

Li(x)

)
= O

(
Li(x)

ε(x)α

)
, from (3.17) and (3.18).

This proves Theorem 3.9 (i).
Proof of (ii) assuming (GRH):
As before, we have a unique n = n(x) such that

`NεR(x) < |Gn| ≤ εR(x). (3.20)

From (3.7), we have

πC(x) ≤ πCn(x) ≤ |Cn|
|Gn|

(Li(x) + c6x
1/2(log dEn + nEn log x)).

As c6x
1/2 log dEn and c6nEnx

1/2 log x are O(Li(x)), we have

πC(x) = O

(
|Cn|
|Gn|

Li(x)

)
.

Similarly as before, from (3.20) and (3.17), we have

πC(x) = O

(
Li(x)

εR(x)α

)
.



4. AN APPLICATION TO
ELLIPTIC CURVES

In this chapter, we look at elliptic curves over rationals and their reductions
at primes. Given a prime p of good reduction for E, we have an elliptic curve
Ẽ(p) over Fp. If ap(E) is the trace of the Frobenius endomorphism of Ẽ(p),
then we prove the following statement:

Given h ∈ Z, the density of primes p such that ap(E) = h is zero.

4.1 Elliptic Curves over the Rationals and

their reductions

An elliptic curve over Q has a Weierstrass equation of the type:

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

where ai ∈ Q. By a change of variable, Y = u3y and X = u2x for a suitable
u ∈ Q∗, we can assume ai ∈ Z.

For a prime p ∈ Z, let vp be the p-adic valuation on Q. Define,

vp(E) = min
E′
{vp(∆(E ′))},

where E ′ is a Weierstrass equation for E with integer coefficients and ∆(E ′)
is its discriminant. By a change of variables, the discriminant changes by a
factor of u12. i.e. If E ′ and E ′′ are integral Weierstrass equations for E, and
E ′′ is got by a change of variables Y = u3y+ su2x+ c and X = u2x+ b, then

∆(E ′′) = ∆(E ′)/u12.

Hence, vp(∆(E ′)) ≡ vp(∆(E ′′)) mod 12 for all integral Weierstrass equations
E ′, E ′′ for E. Therefore, if vp(∆(E ′)) < 12, then

vp(∆(E ′)) = vp(E).
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Definition 4.1. The global minimal discriminant of E is defined as

∆min(E) =
∏
p

pvp(E).

Proposition 4.2 (cf. [DS10], Ex. 8.3.2). There is a Weierstrass equation
E ′ for E such that ∆(E ′) = ∆min(E).

Let us assume from now on that, the elliptic curve E has a minimal
Weierstrass equation with discriminant ∆min(E). For each prime p, we have
the natural reduction mod p map Z→ Fp, from which we get a Weierstrass
equation in Fp by reducing the coefficients of the Weierstrass equation of E.
This mod p Weierstrass equation is non-singular if and only if p 6 |∆min(E).

Definition 4.3. The reduction of E mod p, denoted Ẽ(p), is an elliptic
curve over Fp for all p 6 |∆min(E). These primes p are called as primes of good
reduction.

Note that primes of bad reduction are finite.
For a prime p, consider the elliptic curve E/Q as an elliptic curve E/Qp

using the inclusion Q ↪→ Qp. We immediately see that:

Proposition 4.4. E has good reduction at p if and only if ∆min(E) ∈ Z∗p.

4.1.1 The Néron–Ogg–Shafarevich Theorem

LetK be a local field with maximal ideal p and residue field k with q elements.
Let T`(E) be the `-adic Tate module of an elliptic curve E/K. We have
the natural action of GK = Gal(K/K) on T`(E) which induces an `-adic
representation

ρ` : GK −→ Aut(T`(E)).

Our example of a local field in mind is a finite extension of Qp, for a prime
p. For the theory of elliptic curves over local fields, we refer [Sil06]. The
following version of the theorem is given in [Bel08].

Theorem 4.5. Let E/K be an elliptic curve with minimal Weierstrass equa-
tion and Ẽ be its reduction (mod p). We have:

i) E/K has good reduction if and only if T`(E) is unramified (ρ` is unram-
ified).
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ii) If E/K has good reduction, then T`(E) ∼= T`(Ẽ), via the reduction map,
and the following diagram commutes,

1 IK GK Gal(k/k) 1

Aut(T`(E)) Aut(T`(Ẽ))

πK

ρ`

∼=

ρ̃`

∼=

(4.1)

where IK is the inertia group of K.

The commutativity of the diagram means the following: For a point
P = [x, y, z] ∈ E(K), after multiplication, we can assume x, y, z ∈ R, the
valuation ring of K, and atleast one is non-zero. Consider the reduction mod
p map

π̃ : E(K)→ Ẽ(k), [x, y, z] 7→ [x̃, ỹ, z̃].

. Let φ : T`(E)→ T`(Ẽ) be the isomorphism in (4.1), defined by,

φ(Pn) = (π̃(Pn)).

Let P ∈ T`(E), then for σ ∈ GK , we have ρ`(σ)(P) ∈ T`(E), whence
φ(ρ`(σ)(P)) ∈ T`(Ẽ). Moreover, if ρ̃` is the induced representation by the
action of Gk on T`(Ẽ), then ρ̃`(πK(σ))φ(P) ∈ T`(Ẽ). The commutativity of
the diagram means,

φ(ρ`(σ)(P)) = ρ̃`(πK(σ))φ(P) for all P ∈ T`(E). (4.2)

Corollary 4.6. Let E/K have good reduction. Then,

det(ρ`(σp)) = χ`(σp) = q, (4.3)

Tr(ρ`(σp)) = ap(E), (4.4)

where ap(E) = 1 + q − |Ẽ(k)|.

Proof. The fact that E/K has good reduction implies that ρ` is unramified,
hence we can talk about the Frobenius element σp.

To calculate the determinant of ρ`(σp), we use the Weil pairing on T`(E).
Recall that it is a map

e : T`(E)× T`(E)→ T`(K),

which is linear and Galois invariant. So, for σp ∈ GK and S, T ∈ T`(E), we
have

σp(e(S, T )) = e(Sσp , T σp)

= e(S, T )det ρ`(σp). (Properties of e)
(4.5)
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Also, the action of any σ ∈ GQ on T`(K) is given by the `-adic cyclotomic
character χ`. More precisely, as e(S, T ) ∈ T`(K),

σp(e(S, T )) = e(S, T )χ(σp) = e(S, T )q. (4.6)

Hence, from (4.5) and (4.6), we have det ρ`(σp) = q.
Using (4.2), we see that the eigenvalues of ρ`(σp) is same as that of

ρ̃`(πK(σp)), implying that

Tr(ρ`(σp)) = Trρ̃`(σq),

where πK(σp) = πK(σp) is the Frobenius element in Gk. We know that,

Trρ̃`(σq) = 1 + det(ρ̃`(σq))− det(1− ρ̃`(σq))
= 1 + q − det(1− ρ̃`(σq)).

By Tate’s isogeny theorem for finite fields, for the Frobenius endomor-
phism

ϕq : Ẽ(k)→ Ẽ(k), [x, y, z] 7→ [xq, yq, zq],

we have
det(1− ρ̃`(σq)) = det(1− ϕq) = |Ẽ(k)|.

Therefore, Tr(ρ`(σp)) = ap(E).

4.1.2 Galois representations

For an elliptic curve E/Q, we have the attached `-adic representation

ψ` : GQ −→ Aut(T`(E)) ∼= GL2(Z`) ↪→ GL2(Q`).

For a prime p, an inclusion GQp ↪→ GQ gives a representation ρ` : GQp −→
Aut(T`(E)), induced by ψ`, such that the following diagram commutes.

GQ Aut(T`(E))

GQp

ψ`

ρ`

Note that the action of the inertia group on T`(E), the determinant and trace
of the image of the Frobenius map remain the same when we change the
inclusion GQp ↪→ GQ, as they remain unchanged under conjugation. Thus,
from Corollary 4.6, we have the following theorem regarding the `-adic Galois
representation attached to an elliptic curve over Q.
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Theorem 4.7. The Galois representation ψ` is unramified at all primes p 6= `
where the elliptic curve E has good reduction. Moreover, if σp is the Frobenius
substitution at p, then

Tr(ψ`(σp)) = ap(E), (4.7)

det (ψ`(σp)) = p. (4.8)

Proof. Let p be a prime of good reduction, consider the representation, as
above,

ρ` : GQp −→ Aut(T`(E)),

induced by ψ`. Note that, here the Tate module T`(E) is of the elliptic curve
E/Qp. As σp ∈ GQp , using Corollary 4.6 for the elliptic curve E/Qp, we have

Tr(ψ`(σp)) = Tr(ρ`(σp)) = ap(E),

det (ψ`(σp)) = det(ρ`(σp)) = p.

4.2 The Set-up

Let E/Q be an elliptic curve, SE be the primes of bad reduction of E (this
set is finite as they are the divisors of ∆min(E)). Let p be a prime not in
SE and let Ẽ(p) be reduction of E mod p, which is an elliptic curve over Fp.
Let πp be the Frobenius endomorphism of Ẽ(p), and ap(E) be its trace (cf.
[Sil06], Remark V.2.6). We have,

ap(E) = 1 + p− |Ẽ(p)(Fp)|. (4.9)

Recall that we had the `-adic representation ψ` : GQ → GL2(Z`) attached to
the elliptic curve E, induced by the action of GQ on the Tate module T`(E).

Theorem 4.8 (Properties of ψ`). The representation ψ` : GQ −→ GL2(Q`)
is continuous with respect to the Krull topology on GQ. According to Serre
[Ser98], if E doesn’t have complex multiplication (End(E) = Z), then ψ`(GQ)
is open in GL2(Q`). Moreover, except for finitely many (almost all) primes
`, ψ`(GQ) = GL2(Z`).

For an elliptic curve E without complex multiplication, the set-up we
have is

• G` = ψ`(GQ) is an `-adic Lie subgroup of GL2(Q`) of dimension 4.
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• From the first isomorphism theorem and infinite Galois theory, we have

G`
∼= GQ/ ker(ψ`) = Gal(K/Q),

where K = fixed field of ker(ψ`).

• The representation is unramified outside primes in SE. From Remark
B.8, K is unramified outside the finite set SE.

4.2.1 Number of primes p ≤ x such that ap(E) has a
given value

For h ∈ Z, the set
C`,h = {s ∈ G` | Tr(s) = h}

is a closed subset of G` which is stable under conjugation. Moreover, it is a
level set of the trace map Tr : G` → Z`, implying that it is a manifold over
Q` of dimension 3. Note that we are now in the set-up of Theorem 3.9. Let

PE,h(x) = {p ≤ x | ap = h}.

Theorem 4.9 (cf. [Ser81], Theorem 20). Let E/Q be an elliptic curve with-
out complex multiplication. Then:

(a) PE,h = O(Li(x)/ε(x)1/4) for x→∞.

(b) (GRH) PE,h(x) = O(Li(x)/εR(x)1/4) for x→∞.

Where the functions ε(x) and εR(x) are same as in Theorem 3.9.

Proof. As dimC`,h = 3, we have dimM C`,h ≤ 3 (cf. [Ser81], §4, Theorem 8).
Take ψ−1

` (G`) = G and ψ−1
` (C`,h) = C, d = 3 and N = 4 in Theorem 3.9.

From the above Theorem 4.9, we see that

PE,h(x)

π(x)
= O

(
Li(x)

π(x)ε(x)1/4

)
= O

(
1

ε(x)1/4

)
,

as π(x) ∼ Li(x). As ε(x)→∞ as x→∞, we have

lim
x→∞

PE,h(x)

π(x)
= 0. (4.10)

That is, The density of primes p such that ap(E) = h is 0.



5. APPLICATIONS TO MODULAR
FORMS

We look at certain density theorems on non-nullity of multiplicative func-
tions, and later move on to non-lacunarity of non-CM Hecke eigenforms. We
calculate the density of non-zero coefficients for CM and non-CM eigenforms.
Here, out of the two examples, we see the density of nonzero coefficients of
the Ramanujan delta function. Finally, we finish with conditions for non-
lacunarity of a general modular form in Mk(N,ω).

5.1 Definitions from Modular Forms

For an natural number N , denote

Γ0(N) =

{(
a b
c d

)
∈ SL2(Z)

∣∣∣ c ≡ 0 mod N

}
.

Given a Dirichlet character ω mod N , we say f : H→ C is a modular form of
weight k ≥ 1 and of type (ω,N) (or with Nebentypus ω) if f is a holomorphic
function satisfying the modularity condition:

f(γz) = ω(d)(cz + d)kf(z) where γ =

(
a b
c d

)
∈ Γ0(N). (5.1)

We denote Mk(N,ω) for the C-vector space of modular forms with Nebenty-
pus ω. Recall that, for f ∈Mk(N,ω), we have the attached Fourier series

f(z) =
∞∑
n=0

af (n)qn; q = e2πiz.

We call af (n)’s as the coefficients of f(z). An f ∈ Mk(N,ω) is said to be a
cusp form if it vanishes at all cusps.

There are special operators of arithmetical interest that act on the space
of modular forms. We are interested in the Hecke Operators Tp and Up,
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where p is a prime (The notation used here is of [Ser81].) They are defined
as follows: For f ∈Mk(N,ω),

f |Up(z) =
∞∑
n=0

af (pn)qn if p|N (5.2)

f |Tp(z) =
∞∑
n=0

af (pn)qn + ω(p)pk−1

∞∑
n=0

af (n)qpn if p 6 |N (5.3)

Given a set S of Hecke operators, there exists a common eigen function for
S. This follows as the Hecke operators commute with each other. We call
such a common eigen function to be a Hecke eigenform for S.

Proposition 5.1. If f ∈ Mk(N,ω) is an eigenform for Tp (or Up) and
af (1) 6= 0, then the eigenvalue of f is af (p)/af (1). In particular, if af (1) = 1,
then af (p) is the eigenvalue for f .

Proof. If λ is the eigenvalue of f , then

f |Tp(z) =
∞∑
n=0

af (pn)qn + ω(p)pk−1

∞∑
n=0

af (n)qpn =
∞∑
i=1

λaf (n)qn.

Equating the coefficients, we have λaf (1) = af (p).

Example 5.2 (Ramanujan Delta Function). Let k = 12, N = 1. The Delta
function,

∆(z) = q
∞∏
n=1

(1− qn)24,

is an eigenform for all Tp (hence for all Tm, m ∈ N). This fact helps us in
proving the first two conjectures of Ramanujan about the τ -function. The
third one of course was proved by Pierre Deligne as a consequence of the
Weil conjectures.

5.2 Non-vanishing of Multiplicative

Functions

Let K be a number field of finite degree nK . We define

MK = {non-zero ideals of OK}.

The multiplication of ideals in MK makes it a monoid. The identity of MK

is denoted by 1.
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Definition 5.3. Let R be an integral domain, a function a : MK → R is
said to be a multiplicative function if:

a(1) = 1;

a(mm′) = a(m)a(m′) for co-prime ideals m,m′ ∈MK .

For example, if K = Q, then we have MK ' N, and the above conditions
for n 7→ a(n) to be multiplicative is in the usual sense.

In what follows, we will focus on nullity and non-nullity of a(m). Let
x ≥ 0, we define,

Ma(x) = #{m ∈MK | a(m) 6= 0 for Nm ≤ x}, (5.4)

Pa(x) = #{v ∈ ΣK | a(pv) = 0 for Nv ≤ x}. (5.5)

Recall that Nm denotes the norm of the ideal m in OK , and for a place
v ∈ ΣK , we define Nv = Npv.

The next theorem says that, the asymptotic behaviour of the function
Pa(x) “almost” determines the behaviour of Ma(x).

Theorem 5.4. Suppose that we have

Pa(x) = λx/ log x+O(x/(log x)1+δ) as x→∞, (5.6)

with 0 ≤ λ < 1 and for some δ > 0. We then have,

Ma(x) ∼ γax/(log x)λ as x→∞ (5.7)

for a constant γa > 0.

The proof will be given in the next section.

Remark 5.5. Later, we will see the case λ = 0 (cf. Theorem 5.7), and prove
it using a weaker condition ∑

a(pv)=0

1

Nv
<∞. (5.8)

The Theorem 5.4 asserts that,

Ma(x) ∼ γax, where γa > 0. (5.9)

If M1(x) = {m ∈MK | Nm ≤ x}, we know (due to Dedekind, cf. [Ser81])
that M1(x) ∼ γ1x, where γ1 is the residue (at 1) of the zeta function of K.
Seen in (5.9), we have

Ma(x)/M1(x) ∼ γa/γ1, as x→∞. (5.10)
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Definition 5.6. A subset A ⊂MK has density α if,

#{m ∈ A | Nm ≤ x} = αM1(x) + o(x).

We reformulate Theorem 5.4 in the following manner:

Theorem 5.7. If (5.8) is satisfied, the set Ma = {m ∈MK | a(m) 6= 0} has
density γa/γ1 > 0.

5.2.1 Proof of Theorem 5.4

We will follow the proof in [Ser81]. For m ∈MK , let:

a0(m) =

{
0 if a(m) = 0,

1 if a(m) 6= 0.

The map a0 : MK → Z is a characteristic function for Ma and it defines a
multiplicative function. It is clear that Ma = Ma0 and Pa = Pa0 . Hence, it
suffices to demonstrate Theorem 5.4 for a = a0, i.e. when a takes only 0 and
1 values.

Suppose this is the case. Consider the Dirichlet series,

φ(s) =
∑
m

a(m)Nm−s, (5.11)

which converges for Re(s) > 1. If we write this in the form,

φ(s) =
∑
n≥1

b(n)n−s, where b(n) =
∑

Nm=n

a(m), (5.12)

we have,

Ma(x) =
∑

Nm≤x

a(m) =
∑
n≤x

b(n). (5.13)

In other words, Ma(x) is the summatory function of the coefficients of φ.
Recall, given an arithmetical function f : N→ C, its summatory function

is the function F : R→ C defined by,

F (x) =
∑
n≤x

f(n).

The multiplicativity of a implies that of b. We can therefore write φ as
the Euler product,

φ(x) =
∏
p

φp(s),
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where
φp(s) = 1 +

∑
n≥1

b(pn)p−ns =
∏
v|p

(1 +
∑
n≥1

a(pnv )Nv−s). (5.14)

Lemma 5.8. We have∑
Nv≤x

a(pv) = (1− λ)x/ log x+O(x/(log x)1+δ), (5.15)

with δ > 0.

Proof. As a(pv) = 0 or 1, we have

Pa(x) =
∑

Nv≤x

(1− a(pv)) = πK(x)−
∑

Nv≤x

a(pv). (5.16)

From the prime number theorem for K, we have

πK(x) = x/ log x+O(x/(log x)2). (5.17)

Combining (5.17) with (5.6), and assuming δ < 1, we have (5.15). When
δ ≥ 1, then the error term is O(x/(log x)2).

Lemma 5.9. Moreover, we have∑
p≤x

b(p) = (1− λ)x/ log x+O(x/(log x)1+δ), (5.18)

where the sum is over the rational primes.

Proof. By definition, b(p) =
∑
Nv=p

a(pv). We have

∑
Nv≤x

a(pv) =
∑
p

b(p) +
′∑
a(pv),

where ′ denotes the sum is taken over places v with Nv ≤ x and having
residue degree fv > 1. We know that

′∑
a(pv) ≤ #{v ∈ ΣK | fv > 1} = O(

√
x/ log x) = O(x/(log x)1+δ),

which implies
∑

Nv≤x

a(pv) =
∑
p

b(p) + O(x/(log x)1+δ), and therefore (5.18).
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Remark 5.10. We see why #{v ∈ ΣK | fv > 1} = O(
√
x/ log x). Given a

prime p, there exists at most [K : Q] = nK places lying above it. If v is a
place such that Nv = pfv ≤ x with fv ≥ 2, then we have p ≤ x1/fv ≤ x1/2.
So, for each place v with fv > 1, we have a prime number p ≤ x1/2 and the
number of places producing the same prime p is bounded by nK . Hence,

#{v ∈ ΣK | fv > 1} ≤ nKπ(
√
x) = O(

√
x/ log x).

Lemma 5.11. We have∑
p

b(p)p−s = (λ− 1) log(s− 1) + ε1(s), (5.19)

for a real s > 1, and ε1(s) continuous at s = 1.

Proof. Let α : N→ {1, 0} be the prime counting function. i.e.

α(n) =

{
1 if n is a prime,

0 otherwise.

So,
∑
p≤x

b(p)p−s =
∑
n≤x

b(n)α(n)n−s. If A(x) =
∑
n≤x

b(n)α(n) =
∑
p

b(p) and

φ(y) = y−s, then by Abel summation formula, we have∑
p≤x

b(p)p−s = A(x)φ(x)−
∫ x

1

A(y)φ′(y)dy

= A(x)x−s + s

∫ x

2

A(y)y−s−1dy.

Hence, taking x→∞, we have∑
p

b(p)p−s = s

∫ ∞
2

A(y)y−s−1dy.

From (5.18), we haveA(y) = (1−λ)y/ log y+ρ(y) where ρ(y) = O(y/(log y)1+δ),
from which,∑

p

b(p)p−s = s

∫ ∞
2

(1− λ)
y−s

log y
dy +

∫ ∞
2

ρ(y)y−s−1dy

= s

∫ ∞
2

(1− λ)
y−s

log y
dy +O

(∫ ∞
2

y−s

(log y)1+δ
dy

)
.
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We have,

s

∫ ∞
2

(1−λ)
y−s

log y
dy = (1−λ)

∫ ∞
(s−1) log 2

e−tt−1dt = −(1−λ) log(s−1)+ε2(s),

where ε2 is continuous at 1. We have,∑
p

b(p)p−s = −(1− λ) log(s− 1) + ε2(s) +

∫ ∞
2

ρ(y)y−s−1dy︸ ︷︷ ︸
ε1(s)

[If E1(z) =

∫ ∞
z

u−1e−udu, then we use the known fact that E1(z) =

−γ − log z + O(z) as z → 0, where γ is the Euler’s constant, to see that∫ ∞
2

(y−s/ log y)dy = − log(s− 1) + ε2(s).]

Lemma 5.12. There exists a constant u > 0 such that

φ(s) ∼ u/(s− 1)1−λ for s→ 1 (real s > 1). (5.20)

Proof. According to (5.14), we have

log φ(s) =
∑
p

log φp(s) =
∑
p

b(p)p−s + ε3(s),

where ε3(s) is continuous at s = 1 (and even be extended to the half plane
Re(s) > 1/2). See 5.19, this gives

log φ(s) = (λ− 1) log (s− 1) + ε4(s),

where ε4(s) is continuous at 1. So, we have

φ(s) = ee4(s)(s− 1)λ−1,

implying (5.20).

Lemma 5.13. We have∑
n≤x

b(n)/n ∼ u(log x)1−λ/Γ(2− λ) as x→∞. (5.21)

This follows from Lemma 5.12 and by a tauberian theorem due to G. H.
Hardy and J. E. Littlewood (cf. [HL14], Theorem 16, or the remark below).
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Remark 5.14 (Hardy–Littlewood’s Tauberian Theorem).

Let f(s) =
∞∑
n=1

cnn
−s be a Dirichlet series with positive coefficients and

f(s) ∼ A

(s− 1)α
L

(
1

s− 1

)
for L(u) = (log u)α1(log log u)α2 · · · . Moreover, assume α, α1, α2, · · · are such
that (log n)αL(log n) tends to a positive limit or infinity as n → ∞. Then
we have, ∑

n≤x

cn
n
∼ A

Γ(α + 1)
(log n)αL(log n).

Here, we take α = 1− λ and α1 = α2 = · · · = 0.

Lemma 5.15. We have

Ma(x) =
∑
n≤x

b(n) ∼ (1− λ)
x

log x

∑
n≤x

b(n)

n
as x→∞. (5.22)

This follows from the Lemma 5.9, and the multiplicativity of the function
b, according to Wirsing [Wir61], Hilfssatz (Proposition) 2, page 93.

By combining Lemmas 5.13 and 5.15, we have

Ma(x) ∼ γax/(log x)λ as x→∞,

where

γa =
(1− λ)u

Γ(2− λ)
=

u

Γ(1− λ)
, (5.23)

finishing our proof of Theorem 5.4.

5.2.2 Direct Proof of Theorem 5.7

We want to prove Ma(x) ∼ γax as x→∞, assuming (5.8).
Define c : MK → Z by,

c(m) =
∑
m′|m

µ(m′)a(m/m′),

where µ is the Möbius function. That is, c is a multiplicative function satis-
fying

a(m) =
∑
m′|m

c(m′). (5.24)
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We have,

Ma(x) =
∑

Nm≤x

a(m) =
∑

Nm≤x

∑
m′|m

c(m′)

=
∑

Nm′≤x

∑
Nn≤x/Nm′

c(m′)

=
∑

Nm′≤x

c(m′)M1(x/Nm′),

(5.25)

where M1(x), as before (Remark 4), is the set of m ∈MK with Nm ≤ x. As
wen have noted before,

M1(x) = γ1x+ ψ(x), where ψ(x) = o(x), (5.26)

where γ1 is the residue of the zeta function for K. We deduce,

Ma(x) =
∑

Nm≤x

c(m)(γ1x/Nm + ψ(x/Nm))

= γ1x
∑

Nm≤x

c(m)/Nm +
∑

Nm≤x

ψ(x/Nm)c(m).
(5.27)

We now prove that∑
m

c(m)/Nm = lim
x→∞

∑
Nm≤x

c(m)/Nm <∞.

By definition,

c(pnv ) = a(pnv )− a(pn−1
v ) =


1 if a(pnv ) = 1 and a(pn−1

v ) = 0,

0 if a(pnv ) = a(pn−1
v )

−1 if a(pnv ) = 0 and a(pn−1
v ) = 1,

(5.28)

for all v ∈ ΣK and n ≥ 1. Let us pose,

αv = 1 +
∞∑
n=1

c(pnv )/Nvn = (1− 1/Nv)(1 +
∞∑
n=1

a(pnv )/Nvn). (from (5.28))

(5.29)
We have,

αv =

{
1 +O(1/Nv2) if a(pv) = 1,

1− 1/Nv +O(1/Nv2) if a(pv) = 0.
(5.30)
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Using (5.8), We see that,

α =
∏
v

αv <∞. (5.31)

and the product converges to
∑
m

c(m)/Nm. From this, we have the following

proposition.

Proposition 5.16. We have∑
Nm≤x

ψ(x/Nm)c(m) = o(x).

Proof. We see that

1

x

∑
Nm≤x

ψ(x/Nm)c(m) =
∑

Nm≤x

(
ψ(x/Nm)

x/Nm

)
c(m)/Nm.

As ψ(x) = o(x), for a given ε > 0, we have an N1 ∈ N such that

|ψ(t)| < ε

M + α
t ∀t ≥ N1,

where M = sup(ψ(t)/t). Moreover, let N2 ∈ N such that∣∣∣∣∣ ∑
Nm≥m

c(m)/Nm

∣∣∣∣∣ < ε

M + α
, ∀m ≥ N2.

Now, for x ≥ N1N2, we see that∣∣∣∣∣1x ∑
Nm≤x

ψ(x/Nm)c(m)

∣∣∣∣∣ =
∑

Nm>x/N1

c(m)

Nm

(
ψ(x/Nm)

x/Nm

)
+

∑
Nm≤x/N1

c(m)

Nm

(
ψ(x/Nm)

x/Nm

)

≤M
∑

Nm>x/N1

c(m)

Nm
+

∑
Nm<x/N1

c(m)

Nm

(
ε

M + α

)
≤ ε.

Therefore we have, from (5.27),

Ma(x)/x→ αγ1 as x→∞.
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That is,
Ma(x) ∼ αγ1x as x→∞, (5.32)

which proves Theorem 5.7, and at the same time proves that the density of
the set Ma of m ∈MK such that a(m) 6= 0 is equal to α. Therefore we have,
from (5.27),

Ma(x)/x→ αγ1 as x→∞.

That is,
Ma(x) ∼ αγ1x as x→∞, (5.33)

which demonstrates Theorem 5.7, and at the same time proves that the
density of the set Ma of m ∈MK such that a(m) 6= 0 is equal to α.

Remark 5.17 (Proving equation (5.31)). Let αv = 1 + bv when a(pv) = 1,
and αv = 1− 1/Nv + cv when a(pv) = 0. We have,∏

v

αv =
∏

a(pv)=1

(1 + bv)
∏

a(pv)=0

(1 + (−1/Nv + cv))

As bv = O(1/Nv2), we have
∑
v

bv = O(
∑
v

Nv−2) = O(1) as,

∑
v

Nv−2 =
∑
p

p−2
∑
Nv=p

1 ≤ nK
∑
p

p−2 <∞.

Similarly,
∑
v

cv = O(1). Also, assuming (5.8), we have
∑
v

1/Nv <∞. As

∑
bv,

∑
(cv − 1/Nv)

converge, the product converges. More specifically, by its form, it converges

to the sum
∑
m

c(m)/Nm.

5.3 Hecke eigenvalues of a Polynomial Type

Let f ∈ Mk(N,ω) be a nonzero eigenform for Tp (p 6 |N) with eigenvalue ap.
i.e.

f |Tp = apf (p 6 |N). (5.34)

Let us work with the following assumptions.

(a) k ≥ 2.
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(b) f is a cusp form (parabolic).

(c) f is not of type CM in the sense of Ribet (i.e. there doesn’t exist an
imaginary quadratic field L/Q such that ap = 0 if and only if p is inert
in L).

Let h(x) be a polynomial with complex coefficients. Denote

Σf,h = {p 6 |N | ap = h(p)}, and (5.35)

Pf,h(x) = {p ∈ Σf,h | p ≤ x}. (5.36)

An important example is when h = 0, we have Pf,h(x) = {p ≤ x | ap = 0}.
We will use this in result in the next section.

The following theorem gives us a majorization of the function Pf,h(x).

Theorem 5.18. Under (a), (b) and (c) above, we have

Pf,h(x) = O(Li(x)/ε(x)1/4) x→∞. (5.37)

Moreover, assuming (GRH), we have

Pf,h(x) = O(Li(x)/εR(x)1/4) x→∞. (5.38)

Recall the functions ε(x) and εR(x) are given by the following formulas.

ε(x) = log x(log log x)−2(log log log x)−1,

εR(x) = x1/2(log x)−2.

Corollary 5.19. We have,

Pf,h(x) = O(x/(log x)5/4−δ) for all δ > 0, (5.39)

and, under (GRH), we have

Pf,h(x) = O(x7/8(log x)1/2). (5.40)

Corollary 5.20. For h = 0, then we have

Pf,0(x) = O(x/(log x)3/2−δ) for all δ > 0, (5.41)

and, under (GRH), we have

Pf,0(x) = O(x3/4). (5.42)
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5.3.1 Proof of Theorem 5.18

We first start with an `-adic representation attached to the modular form f
due to Pierre Deligne.

Let F be a number field containing ap and ω(p) for all p 6 |N . We claim
that there is an ultra-metric λ on F such that Fλ, the completion of F with
respect to λ, is isomorphic to Q` for some `. Say F = Q(α) and g be the
minimal polynomial of α. We can find a prime ` such that g has a root in
F`. So, from Hensel’s Lemma, we have Q`(α) = Q`. We also have a prime
L lying above ` such that the residue degree f(L/`) = 1. Therefore, taking
λ to be the L-adic metric on F , we get Fλ ∼= Q`. Hence, we identify ap and
ω(p) as elements in Q`.

According to Deligne, we have a representation,

ρ` : GQ −→ GL2(Fλ) ∼= GL2(Q`),

satisfying:

i) ρ` is unramified at primes p 6 |N`.

ii) Let p 6 |N` and σp be the Frobenius element at p, we have

Tr(ρ`(σp)) = ap (5.43)

det ρ`(σp) = ω(p)pk−1. (5.44)

From the representation ρ`, we have the group G` = Im(ρ`), which is isomor-
phic to Gal(Q/E`), where E` is the fixed field of ker ρ`. We want to now show
that G` is an `-adic Lie group of dimension 4, and then try to use Theorem
3.9.

Proposition 5.21. The group G` is an open subgroup of GL2(Q`).

Proof. To be filled later.

From the above proposition, we have,

dimG` = dim GL2(Q`) = 4.

Let h(x) be a polynomial with complex coefficients. We assume that the
coefficients of h are in F , otherwise Σf,h would be finite. Let e be the order
of the character ω and m = (k−1)e. The choice of this m will be clear later.
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Lemma 5.22. There exists a polynomial H(s, t) in two variables s, t such
that,

H(s, tm) =
∏
ζ∈µm

(s− h(ζt)),

where µm is the set of m-th roots of unity. the polynomial H has coefficients
in F .

Proof. Let h(x) = b0 + b1x+ · · ·+ brx
r, where bi’s are in F . We have,∏

ζ∈µm

(s− h(ζt)) = sm −
∑
ζ

h(ζt)sm−1

+
∑
ζ1 6=ζ2

h(ζ1t)h(ζ2t)s
m−2 + · · ·+

∏
ζ

h(ζt).

We want to prove that the coefficient polynomials in variable t, are actually
polynomials in tm. We will prove it for the coefficients of sm−1 and sm−2, the
other cases follow similarly.

We see that, ∑
ζ

h(ζt) =
∑
i

bit
i
∑
ζ

ζ i.

Using the fact that
∑
ζ

ζ i = 0 if and only if m 6 |i, we see that
∑
ζ

h(ζt) is a

polynomial in tm.
For the coefficient of sm−2, we have∑

ζ1 6=ζ2

h(ζ1t)h(ζ2t) =
∑
ζ1 6=ζ2

∑
i+j=n

bibjt
nζ i1ζ

j
2

=
∑
i+j=n

bibjt
n
∑
ζ1 6=ζ2

ζ i1ζ
j
2

The sum
∑
ζ1 6=ζ2

ζ i1ζ
j
2 is non-zero only when m|i, j. In particular m|n, implying

the coefficient of sm−2 is a polynomial in tm.
The polynomial H has coefficients which are linear combination of mul-

tiples of coefficients of h, hence they are in F .

Consider the set

C = {s ∈ G` | H(Tr(s), det(s)e) = 0}. (5.45)

It is a closed subset and an `-adic submanifold of G` with co-dimension
1. i.e. dimC = 3. From Proposition B.4, we have dimM C ≤ 3 . Let p 6 |N`



5. Applications to Modular Forms 78

be a prime and σp be the Frobenius substitution at p. If p ∈ Σf,h, then we
have

H(Tr(ρ`(σp)), det(ρ`(σp))
e) = H(ap, (ω(p)pk−1)e)

= H(h(p), pm)

=
∏
ζ

(h(p)− h(ζp)) = 0.
(5.46)

Therefore, we have
Σf,h ⊆ ΣC ∪ {`}, (5.47)

Implying that
Pf,h(x) ≤ πC(x) + 1. (5.48)

Using the Theorem 3.9 for C and G`, we have α = 1/4, which proves Theorem
5.18.

5.4 Non-lacunarity of Hecke eigenforms

Let f =
∑
n≥0

af (n)qn be a modular form, and for x ≥ 1, let

Mf (x) = #{1 ≤ n ≤ x | af (n) 6= 0}. (5.49)

Definition 5.23. The modular form f =
∑
n≥0

af (n)qn is said to be of type

CM (complex multiplication) if there exists an imaginary quadratic extension
L of Q such that, for p 6 |N , af (p) = 0 if and only if p inert in L.

Definition 5.24. A modular form f(z) =
∞∑
n=1

af (n)qn is said to be non-

lacunary if the set {n ≤ x | af (n) 6= 0} has positive density. i.e.

lim
x→∞

#{n ≤ x | af (n) 6= 0}
x

> 0. (5.50)

In the following sections, we see the following:

1. A Hecke eigenform f ∈ Mk(N,ω) for Up, Tp, and not of CM type is
non-lacunary. We will also see two important examples.

2. A Hecke eigenform f ∈Mk(N,ω) for Up, Tp, and of CM type is lacunary.

3. An f ∈ Scm(k,N, ω) is lacunary.
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5.4.1 Forms not of type CM

Theorem 5.25. Let f ∈ Mk(N,ω) be non-zero for k ≥ 2. Suppose that f
is an eigenform for the operators Up and Tp, and that f is non CM. There
exists an α > 0 such that,

Mf (x) ∼ αx as x→∞. (5.51)

In other words, the set of positive integers n such that af (n) 6= 0 has
density α > 0.

Proof. Let an = af (n) and assume that a1 6= 0. So WLOG, we can assume
a1 = 1. i.e. f is a normalized eigenform for the operators Up and Tp. We
therefore have,

f |Up = apf for p|N and f |Tp = apf for p 6 |N.

Moreover, the function n 7→ an is multiplicative. Let us distinguish the two
cases:

(a) f is a cusp form

According to Corollary 5.20,

#{p ≤ x | ap = 0} = O(x/(log x)1+δ),

with δ = 1/3. When we apply Theorem 5.4 of Section 5 to the map
n 7→ an, with K = Q and λ = 0, we get (5.51).

(b) f is not a cusp form

From the Remark 5.26, we have

ap = χ(p) + χ−1(p)ω(p)pk−1 when p 6 |N. (5.52)

Hence, as k ≥ 2, ap 6= 0 for all p 6 |N . Let S denote the set of primes
p|N such that ap = 0. We have an = 0 if and only if there exists a
prime divisor p of n such that p ∈ S. Therefore, we have Mf (x) = {n ≤
x | gcd(n, p) = 1 for all p ∈ S}. So, we have

Mf (x) = αx+O(1), where α =
∏
p∈S

(
1− 1

p

)
.

That is, the density of Mf (x) is α.
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Remark 5.26. The definitions and notations used here are from [Miy89].
We know that Mk(N,ω) = Ek(ω)⊕Sk(ω), where Ek(ω) is the space generated
by the Eisenstein series and Sk(ω) is the space of cusp forms. Let f = e+ g,
where e ∈ Ek(ω) and g ∈ Sk(ω). For p 6 |N , we have

f |Tp = e|Tp + g|Tp = ape+ apg.

As Ek(ω) and Sk(ω) are closed under Tp, we have

e|Tp = ape and g|Tp = apg.

Similarly, for p|N ,
e|Up = ape and g|Up = apg.

If g =
∑
n≥1

bnq
n is non-zero, then we have bp = b1ap for all primes p. Moreover,

we have
bn = b1an.

That is, g = b1

∑
n≥1

anq
n. Similarly, as e is non-zero, e = c1

∑
n≥0

anq
n for a

constant c1. From this, we get that the constant map b1c1a0 = b1e − c1g ∈
Mk(N,χ), which is a contradiction. Hence, g = 0 and f = e ∈ Ek(ω).
Let {fi}ki=1 be the set of linearly independent normalized Eisenstein series

spanning Ek(ω) and let f =
k∑
i=1

λifi. We have, for p 6 |N ,

f |Tp =
k∑
i=1

λi(fi|Tp)

= ap

k∑
i=1

λifi.

Hence, as fi’s are eigenforms, we have fi|Tp = apfi. If ain denotes the n-th
Fourier coefficient of fi, then we have aip = apa

i
1 = ap for all i = 1, · · · , k. Let

χi be characters mod N such that fi = f(z, χi, χ
−1
i ω), we have ap = aip =

χi(p) + χ−1
i (p)ω(p)pk−1.

5.4.2 Calculating the density

In this section, we calculate α = lim
x→∞

x−1Mf (x).
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Suppose,

a0
n =

{
1 if af (n) 6= 0,

0 if af (n) = 0.
(5.53)

and

αp = (1− p−1)(1 +
∞∑
n=1

a0
pnp
−n). (5.54)

As seen before, for c : N→ C such that a0
n =

∑
d|n

c(d), we have

1 +
∞∑
n=1

c(pn)p−n = αp.

We therefore have,

α =
∏
p

αp. (5.55)

Let us distinguish the two cases:

(i) p|N
We have a0

pn = (a0
p)
n, giving us,

αp =

{
1− p−1 if a0

p = 0, (ap = 0)

1 if a0
p = 1. (ap 6= 0)

(5.56)

(ii) p 6 |N
If βp and γp are such that

1− apT + ω(p)pk−1T 2 = (1− βpT )(1− γpT ),

then we have

apm =
m∑
i=0

βipγ
m−i
p =

{
(m+ 1)βmp if βp = γp,

(βm+1
p − γm+1

p )/(βp − γp) if βp 6= γp.
(5.57)

The formula apapn =
∑

d|(p,pn)

ω(d)dk−1a pn+1

d

= apn+1 + ω(p)pk−1apn , and

induction on n proves (5.57).
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So, apm = 0 if and only if βp/γp is an m+ 1-th root of unity. Whence:

αp =

1 If βp = γp or βp/γp is not a root of unity,

1− p− 1

pr(p) − 1
If βp/γp is a root of unity of order r(p) ≥ 2.

(5.58)
In particular, ap = 0 ⇐⇒ r(p) = 2 ⇐⇒ αp = 1− 1/(p+ 1).

Examples 5.27. We are interested in the case when ω = 1 (imposing that
k is even), and the case when an’s are integers. We have:

Proposition 5.28. Let p be a prime and let βp/γp be an r(p)-th primitive
root of unity. If:

(a) p = 2, then a2 = ±2k/2, r(2) = 4 and α2 = 14/15;

(b) p = 3, then a3 = ±3k/2, r(3) = 6 and α3 = 363/364.

(c) p > 3, then r(p) = 2 and αp = 1− 1/(1 + p).

Proof. Let us observe that, as ap ∈ Z, βp and γp belong to a quadratic
extension L of Q. Therefore, we have the field extensions

Q ⊂ Q(βp/γp) ⊆ L.

As βp/γp is a primitive r(p)-th root of unity, we have φ(r(p)) = 2. Hence,
r(p) = 2, 3, 4 or 6.

1) (r(p) 6= 3) We see that ap2 = 0 in this case, implying that

a2
p = pk−1,

which is a contradiction as k is even.

2) (r(p) = 4) We have,

a2
p = β2

p + γ2
p + 2βpγp = 2pk−1.

For p ≥ 3, we can’t have the above. For p = 2, we have a2
p = 2k, i.e.

ap = ±2k/2.

3) (r(p) = 6) We have,

a3
p = β3

p + γ3
p + 3βpγp(βp + γp) = 3pk−1ap.

We therefore have p = 3 is the only possibility, and in this case a3 =
±3k/2.
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Hence, for a prime p > 3, we have r(p) = 2.

Eg. 1: Let k = 2, N = 11, and

f = q
∏
n≥1

(1− qn)2(1− q11n)2 = η2(z)η2(11z)

.

We have a2 = −2, a3 = −1 and a11 = −1. From where, α2 = 14/15,
α3 = α11 = 1, and for p 6= 2, 3, 11, αp = 1 if ap 6= 0 and αp = 1−1/(p+1)
if ap = 0. Hence, the density

α =
14

15

∏
ap=0

(1− 1/(p+ 1)). (5.59)

In (5.59), it can be deduced that α < 0.847. It is probable that α ≥
0.845, but, for a proof, it is convenient to find an explicit, but non-
trivial, bound for the number of primes p ≤ x such that ap = 0.

Eg. 2: (Ramanujan ∆ function) Let k = 12, N = 1 and

f = ∆ = q
∏
n≥1

(1− qn)24 =
∞∑
n=1

τ(n)qn.

We have τ(2) = −24 and τ(3) = 252. From which we have, α2 = α3 =
1, αp = 1 for all τ(p) 6= 0 and, αp = 1− 1/(p+ 1) for all τ(p) = 0. We
have the density α of n’s such that τ(n) 6= 0 to be,

α =
∏

τ(p)=0

(
1− 1

p+ 1

)
. (5.60)

In fact, the Lehmer’s conjecture says that τ(n) 6= 0 for all n ≥ 1.

5.4.3 Forms of type CM

Let k ≥ 2 and f =
∞∑
n=0

anq
n ∈ Mk(N,ω) be an eigenform for the operators

Up and Tp.

Definition 5.29. The modular form f is said to be of type CM (complex
multiplication) if there exists an imaginary quadratic extension L of Q such
that, for p 6 |N , ap = 0 if and only if p inert in L.
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Proposition 5.30. Let f 6≡ 0, be an eigenform for the operators Up and Tp,
such that f is of type CM. Then there exists an α > 0 such that

Mf (x) ∼ αx/(log x)1/2, as x→∞. (5.61)

(As in Theorem 5.25, we assume af (1) = 1 and n 7→ af (n) is multiplica-
tive.)

Proof. Let P (x) = #{v ∈ ΣL | af (pv) = 0} = #{p inert in L | Np = p2 ≤ x},
then

P (x) =
x

2 log x
+O(x/(log x)2). (cf. (5.62) below)

Using Theorem 5.4 for K = Q, λ = 1/2 and δ = 1, we get the proposition.

Remark 5.31 (Density of primes inert in a quadratic extension). Leaving
out finitely many, we either have a prime that splits or a prime that is inert
in a quadratic extension L/Q. We have,

• Frobp = {1}, if p splits.

• Frobp generates Gal(L/Q), if p is inert.

Using the Chebotarev Density Theorem for the conjugacy class {Frobp}, we
get the density of primes inert in L is equal to 1/2. Moreover, using (3.6), if
P (x) = #{p inert in L | Np ≤ x}, then

P (x) =
x

2 log x
+O(x/(log x)2). (5.62)

5.5 Non-lacunarity of Modular Forms of

weight greater than 1

5.5.1 The Space Mk(N,ω)

Let us recall that Mk(N,ω), the space of modular forms of type (k, ω) on
Γ0(N), has the following direct sum decomposition,

Mk(N,ω) = Sk(N,ω)⊕ Ek(N,ω), (5.63)

where Sk(N,ω) is the space of cusp forms and Ek(N,ω) is the space of Eisen-
stein series, which is also the null space of Sk(N,ω) with respect to the Peter-
son inner product (cf, [Miy89], Theorem 4.7.2). This decomposition is stable
under Up and Tp.
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Let M = M(N,ω) be the set of positive divisors M of N such that the
conductor of ω divides M (If ω is primitive, then M = {N}). For M ∈M, let
ωM be the character, mod M , that coincides with ω for all entries co-prime
to N . i.e.

ωM(n) = ω(n), for all (n,N) = 1. (ωM induces ω)

Proposition 5.32. Let M ∈ M, f ∈ Sk(M,ωM), for a positive number d
such that d|N/M , we define fd(z) := f(dz). We have fd ∈ Sk(N,ω).

Definition 5.33. A non-zero g ∈ Sk(N,ω) is called an oldform of levelN and
weight k, if it is of the form fd, for some d > 1. An eigenform f ∈ Sk(N,ω)
for all Tp’s, p 6 |N , that is not an oldform is called as a newform.

Let PM be the set of new forms of level M and of type (k, ωM). Moreover,
we have

{fd | d|N/M and f ∈ PM}

to be a basis for Sk(N,ω) (cf. (5.35) for examples). Denote Scm(k,N, ω),
respectively Snon

cm (k,N, ω), the space generated by {fd} when f has CM,
respectively doesn’t have CM. We have,

Sk(N,ω) = Scm(k,N, ω)⊕ Snon
cm (k,N, ω). (5.64)

The spaces Scm(k,N, ω) and Snon
cm (k,N, ω) are stable under the operators Up

and Tp. This is seen by the following proposition:

Proposition 5.34. For all M ∈ M, f ∈ PM and a positive divisor d of
N/M , we have:

fd|Tp = af (p)fd if p 6 |N, (5.65)

fd|Up =


fd/p if p|d,
af (p)fd if p 6 |d and p|m,
af (p)fd − ωM(p)pk−1fdp if p 6 |dM and p|N.

(5.66)

Proof. Let f(z) =
∞∑
n=1

af (n)qn ∈ PM . We know that f |Tp = af (p)f for all

p 6 |M , implying

af (np) = af (p)af (n) if p 6 |n,
af (p)af (n) = af (np) + ωM(p)pk−1af (n/p) if p|n.

(5.67)
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We have, fd(z) =
∞∑
n=1

af (n)qnd =
∞∑
n=1

bnq
n, where bn = 0 if d 6 |n, and

bn = af (n/d) if d|n. For p 6 |N , we have

fd|Tp =
∞∑
n=1

cnq
n, where cn =

∑
d|(p,n)

ω(d)dk−1bnp/d2 .

If d 6 |n, then

cn = bnp + ω(p)pk−1bn/p = 0. (as d 6 | np and n/p)

If n = dm, then

cn = bnp + ω(p)pk−1bn/p = af (mp) + ω(p)pk−1af (m/p) = af (p)af (m).

Hence, we get (5.65).

To prove (5.66), we see that fd|Up =
∞∑
n=1

bnpq
n.

• If p|d,

fd|Up =
∑
d|np

af (np/d)qn = fd/p.

• If p 6 |d and p|M , then

fd|Up =
∑
d|n

af (np/d)qn = af (p)fd.

• If p 6 |dM and p|N , we have f |Tp = af (p)f , and therefore have (5.67).
Therefore, we have

fd|Up =
∞∑
m=1

af (mp)q
md

=
∞∑
m=1

af (p)af (m)qmd + c(p,m)
∞∑
m=1

af (m/p)q
md,

where c(p,m) = 0 if p 6 |m, and c(p,m) = −ωM(p)pk−1, otherwise.

We have proved (5.66).
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Examples 5.35. 1. Let η(z) = e2πz/24

∞∏
n=1

(1− e2πnz) be the Dedekind eta

function, and let f(z) = (η(z)η(2z))8. We see that f ∈ S8(Γ0(2)) and
is a newform. To see this, we have dimS8(Γ0(2)) = 1, which follows
form a more general formula (cf. Stein [SGS07])

dimSk(Γ0(N) = (k − 1)(g0(N)− 1) + (k/2− 1)C0(N)

+ µ0,2(N)

[
k

4

]
+ µ0,3(N)

[
k

3

]
.

In the case of N = 2 and k = 8, we have

µ0,2(N) = 1, µ0,3(2) = 0, C0(2) = 2 and g0(2) = 0.

2. The space S12(Γ0(2)) is spanned by ∆(z) = η(z)24 and ∆(2z). This
can be seen by the linear independence of ∆(z),∆(2z) and the fact
that dimSk(Γ0(2)) = 2.

Hence, we see that Mk(N,ω) has the following decomposition of spaces
invariant under Up and Tp.

Mk(N,ω) = Snon
cm (k,N, ω)⊕ Scm(k,N, ω)⊕ Ek(N,ω). (5.68)

Theorem 5.36. Let f ∈Mk(N,ω), with k ≥ 2.

(i) If f 6∈ Scm(k,N, ω), we have

Mf (x) � x as x→∞.

(ii) If f ∈ Scm(k,N, ω) and f 6= 0, we have

Mf (x) � x/(log x)1/2 as x→∞.

Recall the notation φ � ψ means that φ = O(ψ) and ψ = O(φ).

Remark 5.37. In Theorem 5.36, the statement (ii) says that a modular
form f ∈ Scm(k,N, ω) is Lacunary. i.e. lim

x→∞
Mf (x)x−1 = 0.
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5.5.2 Proof of Theorem 5.36

We have Mf (x) = O(x), as Mf (x) ≤ x, and if f ∈ Scm(k,N, ω), we have

Mf (x) = O(x/(log x)1/2). (5.69)

To see (5.69), assume f =
∞∑
n=1

af (n)qn =
k∑
i=1

gidi , where gi’s are CM forms.

Let gi =
∞∑
n=1

ai(n)qn, and let gidi =
∞∑
n=1

bi(n)qn for

bi(n) =

{
0 if di 6 |n,
ai(n/di) if di|n.

We have

af (n) =
k∑
i=1

bi(n).

Hence, af (n) 6= 0 implies bi(n) 6= 0 for some i, and hence ai(n/di) 6=
0.Therefore, we have

Mf (x) ≤
k∑
i=1

Mgi(x/di).

As Mgi(x/di) = O(x/(log x)1/2), we have (5.69).
Let us define

Ri = {f ∈Mk(N,ω) | lim inf
x→∞

x−1Mf (x)(log x)i = 0}.

We are interested in R0 and R1/2. More precisely, to prove Theorem 5.36,
we show that

R0 = Scm(k,N, ω) and R1/2 = 0.

Let us denote H, for the C-algebra of endomorphisms of Mk(N,ω) gener-
ated by Up and Tp, for all p.

Lemma 5.38. The set Ri is stable under H. In particular, R0 and R1/2 are
stable under H.

Proof. For f(z) =
∞∑
n=0

anq
n, let f |Tp =

∞∑
n=0

bnq
n, where

bn = anp + ω(p)pk−1an/p.
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As bn 6= 0 if and only if anp 6= 0 or an/p 6= 0, we have

Mf |Tp(x) ≤Mf (x/p) +Mf (xp) ≤ 2Mf (xp). (5.70)

If f ∈ Ri, then lim inf x−1Mf (x)(log x)i = 0, i.e. there is a sequence xn →∞
such that x−1

n Mf (xn)(log xn)i → 0. From (5.70), we have f |Tp ∈ Ri.
Similarly, for A ∈ H, we have a constants mA and CA such that

MAf (x) ≤ CAMf (mAx). (5.71)

Therefore, using (5.71), Af ∈ Ri.

To see (5.71), we have

Mf+g(x) ≤Mf (x) +Mg(x). (5.72)

for any f, g ∈Mk(N,ω).
Now we resume the proof of Theorem 5.36. From (5.69), we see that

Scm(k,N, ω) ⊆ R0. We need to prove the equality, as mentioned before.
Consider f ∈ R0 \ Scm(k,N, ω) of the form,

f = g + h, g ∈ Scm(k,N, ω) and h ∈ Snon
cm (k,N, ω)⊕ Ek(N,ω).

(Note that h 6= 0.) As Mh(x) ≤ Mf (x) +Mg(x) and Mg(x) = o(x), we have
h ∈ R0. Therefore, Hh is an H-module. It has a simple H-submodule Σ. As
Σ ⊆Mk(N,ω) is a finite dimensional C-subspace, we can use Schur’s Lemma
(See 5.39 below) to obtain an eigenform, say ĥ, for Tp and Up. As ĥ is not
of type CM, we have an α > 0 such that Mĥ(x) ∼ αx, contradicting the

fact that ĥ ∈ R0. This says that R0 = Scm(k,N, ω), thereby proving (i) of
Theorem 5.36.

Proposition 5.39 (Schur’s Lemma). Let A be an algebra over an alge-
braically closed field F , and M be a finitely dimensional (over F ) simple
A-module. Then, an endomorphism of M is a multiplication by an element
in F .

For part (ii) of Theorem 5.36, we should prove R1/2 = 0. Let f ∈ R1/2

be non-zero. Similarly as before, there is an eigenform f̂ for Up and Tp.

Moreover, as f̂ is of the type CM, we have an α > 0 such that

Mf̂ (x) ∼ αx/(log x)1/2,

contradicting the fact that f̂ ∈ R1/2.
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Appendix A

I Maps Between Curves

Let K be a field, K be a fixed algebraic closure of K. A curve is a projective
variety of dimension 1 in a projective space Pn.

Let us recall the definition of a coordinate ring of a projective algebraic
set.

Definition A.1. Let Y ⊆ Pn be an algebraic set and S = K[x0, · · · , xn].
Define I(Y ) to be the ideal generated by

{f ∈ S | f is homogeneous , f(P ) = 0 ∀ P ∈ Y }

The coordinate ring of Y , denoted S(Y ), is defined as

S(Y ) := S/I(Y )

Definition A.2 (Function field). The function field of a projective variety
Y is the subfield of the field of quotients of S(Y ) consisting of elements f/g,
where f, g are homogeneous of same degree and g 6= 0. It is denoted by
K(Y ).

Now let us define a rational map between two projective varieties.

Definition A.3. Let U ⊆ Pn, V ⊆ Pm be two projective varieties. A rational
map φ : U → V is of the form

φ(P ) = [f1(P ), · · · , fm(P )]

where f1, · · · , fm ∈ K(U).

Example A.4.

(a) Consider the circle C : X2 + Y 2 = Z2 and the map φ : C → P1 defined
by

φ[X, Y, Z] = [X, Y ].

We also have a map ψ : P1 → C defined by

ψ[S, T ] = [S2 − T 2, 2ST, S2 + T 2].
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(b) Consider the hyperbola C : XY = Z2 and the map x = X/Z : C → P1

defined by
x[X, Y, Z] = [X/Z, 1].

We note that a rational map φ : U → V may not be defined for all points
on U , but we can calculate at some special points called regular points.

Definition A.5. Let φ = [f1, · · · , fk] : U → V be a rational map. A point
P ∈ U is said to be a regular point if there exists a g ∈ K(U) such that
gfi(P ) 6= 0 for some i = 1, · · · , k. We then define φ(P ) = [gf1, · · · , gfk].

Example A.6. Let C : XY = Z2 and x = [X/Z, 1] : C → P1. By the
definition of x, we can’t evaluate it at P = [1, 0, 0]. But we can evaluate it
as follows,

x(P ) = [X/Z, 1](P ) = [X,Z](P ) = [1, 0].

Similarly, for Q = [0, 1, 0] we evaluate it as follows,

x(P ) = [X/Z, 1](P ) = [Z/Y, 1](P ) = [0, 1].

For a more abstract definition of a rational map between projective vari-
eties X and Y , we refer [Har77].

I.1 Maps Between Smooth Curves

Rational maps between smooth curves are of two types: they are either
constant or they are surjective.

For a curve C/K, we have the identification (cf. [Sil06], Example II.2.2)

K(C)←→ {maps C → P1 defined over K}.

Given a non-constant rational map φ : C1 → C2 between two smooth curves,
we define the map

φ∗ : K(C2)→ K(C1), f 7→ f ◦ φ.

The map is a ring homomorphism and , as φ is not constant, is an injection
of function fields.

Definition A.7. Let φ : C1 → C2 be a rational map between two smooth
curves.

1. If φ is constant, we say degree of φ is 0. Otherwise, we say degree of φ
is the degree of the extension K(C1)/φ∗(K(C2)).

2. Assume φ is not constant. We say φ is separable if K(C1)/φ∗(K(C2))
is a separable extension. Moreover,
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I.2 Frobenius Morphisms

Let K be a field of characteristic p > 0 and q = pr. For a curve C/K given
by the the equation F (X, Y, Z) = 0, we can define a new curve C(q) as the
zero set for the polynomial whose coefficients are qth powers of coefficients of
F .

Example A.8. Let K = F3[i], where i is the square root of −1 in F3.
Consider E : y2 = x3 + ix, we have

E(3) : y2 = x3 − ix.

There is a natural map φq : C → C(q) defined by

φq[x0, x1, · · · , xn] = [xq0, x
q
1, · · · , xqn].

This map is called as the q-th Frobenius morphism. The next proposition
states some properties of this map.

Proposition A.9. Let φq : C → C(q) be the q-th Frobenius morphism. We
have

• φ∗q(K(C(q))) = K(C)q.

• φq is purely inseparable.

• deg(φq) = q.

Proof. cf. [Sil06], Proposition II.2.11.

Remark A.10. Let E/Fq be an elliptic curve. As E(q) = E, we have the
q-th Frobenius endomorphism

φq : E → E, [x, y] 7→ [xq, yq, zq].

Also, we see that the Fq rational points on the elliptic curve E are precisely
the elements of ker(φq − 1).

Lemma A.11. If ψ : C1 → C2 is a morphism between two smooth curves
C1 and C2, then there exists a separable morphism λ : C

(q)
1 → C2 and a

Frobenius morphism φ : C1 → C
(q)
1 , where q = degi(ψ), such that ψ = λ ◦ φ.

i.e.
ψ : C1

φ−→ C
(q)
1

λ−→ C2.
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Proof. Let F be the separable closure of φ∗(K(C2)) inside K(C1). As the
extension K(C1)/F is purely inseparable, we have f q ∈ F for all f ∈ K(C1),
i.e. K(C1)q ⊆ F, where q = degi(ψ). From Proposition A.9, we have
K(C1)q = F. Hence, we have the field extensions

ψ∗(K(C2)) ↪→ K(C1)q ↪→ K(C1).

The first inclusion is induced by a separable morphism λ : C
(q)
1 → C2 and

the other inclusion by the Frobenius map φ : C1 → C
(q)
1 . It is clear that, as

ψ∗ = (λ ◦ φ)∗, ψ = λ ◦ φ.

II Divisors

Let C be a curve over K in the projective plane P2 = P2
K

.

Definition A.12. The divisor group of the curve C is the free abelian group
generated by the points on C. It is denoted by Div(C). An element of this
group is called a divisor.

A divisor is of the form

D =
∑
P∈C

nP (P )

where nP = 0 for all but finitely many. The degree of D is defined to be∑
P∈C

nP and is denoted by deg(D). We see that the set, {D ∈ Div(C) | deg(D) =

0} forms a subgroup of the divisor group. This is denoted by Div0(C).
We see that GK = Gal(K/K) acts on the points on C as follows, For

P = [x0, x1, x2] ∈ C and σ ∈ GK

P σ := [σ(x0), σ(x1), σ(x2)]

We can extend this action to Div(C) as follows

Dσ =
∑
P∈C

nP (P σ)

As deg(D) = deg(Dσ) we see that GK similarly acts on Div0(C).

Definition A.13. A divisor D ∈ Div(C) is said to be defined over K if
D = Dσ for all σ ∈ GK .
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Example A.14. Let C : XY = Z2 be a hyperbola over Q. We see that

C = {[x, y, 1] ∈ P2
Q | xy = 1} ∪ {[0, 1, 0], [1, 0, 0]}

Let P1 = [i,−i, 1], P2 = [−i, i, 1] then D = n1((P1) + (P2)) is defined over Q.

The set of divisors defined over K forms a group denoted by DivK(C).
Similarly, Div0

K(C) denotes the group DivK(C) ∩Div0(C).
For a smooth curve C, we know that

OP :=

{
h

g
∈ K(Y ) | g(P ) 6= 0

}
is a DVR with the valuation ordP : K(Y )∗ → Z for all P ∈ C. For f ∈
K(C)∗ = K(C)− {0} we define

div(f) :=
∑
P∈C

ordP (f)(P )

The above definition is well defined as it follows from the theorem below.

Theorem A.15. Let C be a smooth curve and f ∈ K(C)∗. Then there are
only finitely many points at which f either has a zero or a pole.

Example A.16. Lets consider the same example of the hyperbola, C :
XY = Z2 and f = X2/ZY ∈ K(C)∗. It has poles at Z = 0 an Y = 0,
i.e at [1, 0, 0] on C. What about [0, 1, 0]?

f =
(Z2/Y )2

ZY
=

Z4

ZY 3
=
Z3

Y 3

Hence f [0, 1, 0] = 0. We see that these are the only zeros and poles of f .

There is an action on K(C) by the Galois group G which acts on the
coefficients of the polynomial. For σ ∈ GK we denote the action on f by fσ.

Proposition A.17. For σ ∈ GK,

div(fσ) = (div(f))σ

Proposition A.18. The maps

div : K(C)∗ → Div(C)

div|K(C) : K(C)∗ → DivK(C)

are homomorphisms of abelian groups.
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Definition A.19. A divisor D ∈ Div(C) is called principal if D = div(f) for
some f ∈ K(C). Define an equivalence relation on D by D1 ∼ D2 if D1−D2

is principal. The divisor class group of C, denoted by Pic(C), is defined by

Pic(C) = Div(C)/Img(div)

Define PicK(C) ⊆ Pic(C) to be the divisors fixed by GK .

Theorem A.20. Let C be a smooth curve and f ∈ K(C)∗. Then,
(a) div(f) = 0 if and only if f ∈ K∗.
(b) deg(div(f)) = 0.

To prove the first part, we require the following lemma.

Lemma A.21. If φ : C1 → C2 is a rational map between two smooth curves
C1 and C2, then φ is a constant map or a surjection.

For part (b), we refer to [Sil06].

Example A.22. Lets first look at Lemma 1. If we take C2 = P1 then the
Lemma 1 states that for a point [a, b] ∈ P1, we have a point P ∈ C1 such
that φ(P ) = [a, b]. More specifically, If φ := [f, g] for f, g ∈ K(C)∗, then f
and g have zeros on C.

Example A.23. Let us consider the smooth curve C = P1. We saw that in
general, every principal divisor is of degree 0. In this case, we see that any

divisor of degree 0 is principal. Let D =
∑
P∈P1

nP (P ) be a divisor of degree 0.

i.e.
∑
P

nP = 0. For P = [aP , bP ], consider the function

f =
∏
P∈P1

(XbP − Y aP )nP

As
∑
P

np = 0 we have f ∈ K(P1). For P ∈ P1, we have MP = {g ∈

K(P1) | g(P ) = 0} = 〈XbP − Y aP 〉 and hence ordP (f) = nP . Therefore,

div(f) =
∑
P∈P1

nP (P ) = D

From the above result, we see that the map, deg : Div(P1) → Z defined
by D 7→ deg(D) has kernel = Img(div). This induces an isomorphism from
Pic(P1) to Z. We have the following exact sequence

1 −→ K
∗ −→ K(C)∗

div−→ Div(C)
deg−−→ Z −→ 1
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Example A.24 (Elliptic Curve). Consider the curve C : y2 = (x− e1)(x−
e2)(x − e3) where e1, e2, e3 ∈ K are distinct. If Char(K) 6= 2, then this
forms a smooth curve in P2 with the point P∞ = [0, 1, 0] at infinity. Let
Pi = [ei, 0, 1] for i = 1, 2, 3. We have MPi

= 〈x − ei, y〉 by which y2 ∈ M2
Pi

.

As y2 = (x− ei)
∏
i 6=j

(x− ej) we have

(x− ei) = y2
∏
i 6=j

(x− ej)−1 ∈M2
Pi

as (x − ej) is a unit in OPi
for i 6= j. Hence the vector space MPi

/M2
Pi

is
generated by y, implying MPi

= (y). We therefore have ordPi
(x− ej) = 2δij.

The point [0, 1, 0] at infinity lies on zero set of x − ei as this is equivalent
to X − eiZ. When we look locally in the open set Y 6= 0, we see that by a
similar argument ordP∞(x − ei) = −2. This also follows from the fact that
deg(div(x− ei)) = 0. Summarizing the results we get

div(x− ei) = 2(Pi)− 2(P∞)

Similarly,
div(y) = (P1) + (P2) + (P3)− 3(P∞).

III Derivations

Let K be a function field of one variable over an algebraically closed field k (a
finitely generated k-algebra of transcendence degree 1) and E be a K-vector
space.

Definition A.25. A derivation of K into E is a map D : K → E satisfying
the properties
(a) D(f + g) = Df +Dg.
(b) D(fg) = f(Dg) + g(Df)
(c) Da = 0 for a ∈ k
We denote the K-vector space of derivations of K into E as Derk(K,E).

Note that the above properties imply that a derivation D ∈ Derk(K,E)
is also a k-linear map.

Example A.26. Let K = k(x) be a rational field, we see that Derk(K,E) is
isomorphic to E as follows. Consider the map φ : Derk(K,E) → E defined
by

φ(D) = D(x).
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This map is linear and if D ∈ Ker(φ) then D(x) = 0. This implies D(f) = 0
for any f ∈ k(x) from the properties of derivation. Hence Ker(φ) = 0. φ is
also a surjection as for any e ∈ E, we can define D(x) = e and extend it to
a derivation on K using the above properties.

Now let us look at derivations of extensions of K. The following theorem
says that there is a unique ’lift’ of a derivation of K to a derivation of L
when the latter is a finite separable extension of K.

Theorem A.27. Let L be a finite separable extension of K. Then the re-
striction map Derk(L,E) −→ Derk(K,E) is a bijection, and hence an iso-
morphism.

Proof. As L|K is finite separable, it is a simple extension. Let y ∈ L be such
that L = K(y). First let’s prove the uniqueness of lifts. Say, there are two
derivations D1, D2 of L which when restricted to K give D ∈ Derk(K,E).

let P (x) = a0+a1x+· · ·+an−1x
n−1+xn ∈ K[x] be the minimal polynomial

of y over K. We see that

D1(P (y)) =
n−1∑
i=0

D1(aiy
i) +D1(yn) = D1(y)P ′(y) + PD(y) = 0

where PD(y) =
n−1∑
i=0

D(ai)y
i. As y is separable, p′(y) 6= 0 and hence

D1(y) = −P
D(y)

P ′(y)

Similarly we get

D2(y) = −P
D(y)

P ′(y)
= D1(y)

Hence D1 = D2.
The existence of such a derivation can be shown by taking D1(y) =

−PD(y)/P ′(y) and extending it to K(y) gives a derivation that extends
D.

This has interesting corollaries.

Corollary A.28. If there exists y ∈ K such that K/k(y) is finite separable
then Derk(K,E) is isomorphic to E as a K vector space.
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Proof. From the above theorem we get Derk(K,E) ∼= Derk(k(y), E). The
latter is again isomorphic to E from Example A.26. The explicit isomorphism
is the following map

D ∈ Derk(K,E) −→ D|k(y) −→ D(y) ∈ E

Corollary A.29. Assume the Hypothesis of Corollary A.28. If f, g ∈ K
and g 6∈ k, then for any two derivations D1, D2 ∈ Derk(K,K)(= Derk(K))
we have

D1(f)

D1(g)
=
D2(f)

D2(g)

Proof. From Corollary A.28, we know that Derk(K,K) is a 1 dimensional
vector space over K. Hence, any two derivations D1, D2 are such that D1 =
aD2 for a ∈ K. This implies

D1(f)

D1(g)
=
aD2(f)

aD2(g)
=
D2(f)

D2(g)

IV Differentials

Definition A.30. The dual space of Derk(K,E) is defined to be the space
of E-valued differentials, denoted by Diffk(K,E)

Assume K as in Corollary A.28 and E = K, then Diffk(K,K) = Diffk(K)
is a 1 dimensional K-vector space. The elements of Diffk(K) are called as
differential 1 forms on K. For an element f ∈ K we can define a differential
1 form df : Derk(K) −→ K defined by

df(D) = D(f)

This in turn gives us a mapping d : K → Diffk(K) defined by f 7→ df . The
map d is not sujective as it is only k-linear and not K-linear and one can
easily verify that d is a derivation.

Let f, g ∈ K and g 6∈ k, then

df

dg
(D) :=

df(D)

dg(D)
=
D(f)

D(g)
= Constant

Let us denote Dg(f) for D(f)/D(g).
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let x be a transcendental element over k and let K = k(x). Consider
f(x) = a0 + a1x+ · · ·+ anx

n ∈ k[x] ⊆ K. We see that

df

dx
(D) = a1 + 2a2x+ · · ·+ nanx

n−1.

This is the usual derivative f ′(x) of f wrt x. This can be extended to
whole of K, meaning, for h = f/g ∈ K where f, g ∈ k[x]. Hence,

dh

dx
(D) = Dx(f/g) =

gD(f)− fD(g)

g2D(x)
=
gf ′(x)− fg′(x)

g2
= h′(x)

A differential of the form df is called as an exact differential and the space
of exact differentials d(K) forms a k-subspace of Diffk(K).

IV.1 Differentials on Curves

Let K be a field and K be a fixed algebraic closure of K. Given a curve C
over K, we have the associated function field K(C). Consider the following
two lemmas.

Lemma A.31. Let C be a curve over K, P be a smooth point on C and
t = tP be a uniformisor at P . Then K(C) is a finite separable extension of
K(t).

Proof. cf. [Sil06], Proposition II.1.4.

Lemma A.32. There exists a non singular point on any variety. In partic-
ular, this holds for a curve.

Proof. According to [Har77], Theorem I.5.3, the set of singular points of a
variety Y form a proper closed subset of Y .

We see that K(C) satisfies the hypothesis of Corollary A.28. Hence the
space of differential 1 forms, denoted by Ω(C), on K(C) is a 1 dimensional
K(C) vector space.

Let C1, C2be two curves and φ : C1 → C2 be a rational map. This
induces a K-algebra homomorphism φ∗ : K(C2)→ K(C1) defined by φ∗(f) =
f ◦ φ. Recall that φ is said to separable if K(C1) is a separable extension of
φ∗(K(C2)).

Remark A.33. In defining φ∗, we are identifying K(C) with the set of non
constant rational maps C → P1 defined over K.
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φ∗ induces a K(C) linear map φ∗ : Ω(C2) → Ω(C1) defined by φ∗(df) =
d(φ∗f). This method in general is known as push forwards of differentials.

Theorem A.34. (a) dx is a basis for Ω(C) if and only if K(C) is a finite
separable extension of K(x).

(b) φ is separable if and only if φ∗ : Ω(C2)→ Ω(C1) is injective.

Proof. cf. [Sil06], §II, Proposition 4.2.

Before looking at more properties of the differential, let us consider a
remark which will be used in the proof of the next proposition.

Remark A.35. We see that for a uniformisor t ∈ OP and an f ∈ OP , we
can attach a formal power series to f in t. That is, we have a K linear
map T : OP → K[[t]] defined by T (f) = a0 + a1t + a2t

2 + · · · , where
a0 = f(P ), a1 = (f − a0)t−1(P ), . . . , so on. This map can then be extended
to an embedding T : K(C) → K((t)) of K(C), where K((t)) is the field
of Laurent series in t. We have the following extensions of fields K(t) ⊆
T (K(C)) ⊆ K((t)), where the first extension is finite separable.

Proposition A.36 (cf. [Sil06], Proposition II.4.3.). Let C be a curve, P be
a smooth point and t = tP be a uniformiser at P .

(a) For an ω ∈ Ω(C), there exists a unique function g ∈ K(C) such that

ω = gdt

(b) If f ∈ OP , then df/dt = Dt(f) ∈ OP .

Proof. (a) The existence of g follows from Lemma A.31 and the fact that
Ω(C) is a 1 dimensional K(C) vector space. This expression is unique
as dt is a basis from Theorem A.34.

(b) cf. II.3.10, [Rob72].

Corollary A.37. If t, s are two uniformisers for OP , then ordP (dt/ds) = 0.

Proof. As dt/ds and ds/dt are both in OP , we have ordP (dt/ds) = 0

Corollary A.38. Let t be a uniformisor for OP . For ω = fdt ∈ Ω(C), the
quantity ordP (f) is independent of the uniformiser.

Proof. If ω = fdt = gds, where t, s are uniformisers for OP . Taking orders
both sides, we have ordP (f) = ordP (g).
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Definition A.39. Let P be a smooth point and t be a uniformisor at P .
The order of a differential ω = fdt is defined to be ordP (f) and is denoted
by ordP (ω).

Proposition A.40. Let f, x ∈ K(C) and x(P ) = 0, let p = CharK. Then
we have

ordP (fdx) = ordP (f) + ordP (x)− 1 when p = 0 or p 6 |ordP (x)
ordP (fdx) ≥ ordP (f) + ordP (x) when p > 0 and p|ordP (x)

V Ramification of Maps

Consider two curves C1 and C2 defined over K, and a non-constant rational
map φ : C1 → C2. We have the induced map injective φ∗ : K(C2)→ K(C1)
defined by f 7→ f ◦ φ.

Definition A.41. Let C1 and C2 be two smooth curves. The ramification
index of the map φ : C1 → C2 at the point P ∈ C1, denoted by eφ(P ), is
defined by

eφ(P ) = ordP (φ∗(tφ(P )))

where tφ(P ) is a uniformiser at φ(P ). If eφ(P ) > 1, then we say that φ ramifies
at P . Otherwise, we say it is unramified.

Example A.42. Let C2 = P1 and C1 : X2 +Y 2 = Z2. Consider the rational
map φ : C1 → P1 defined by

φ[X, Y, Z] = [X, Y ].

It is seen that φ is well defined and is a rational map. Let us try to calculate
the ramification index of φ at P1 = [1, 0, 1] ∈ C1. A uniformiser at φ(P1) =
[1, 0] is Y and

φ∗(Y ) = Y ◦ φ : [X, Y, Z] 7→ [X, Y ] 7→ Y.

As Y is a uniformiser at P1, eφ(P1) = 1. Let P2 = [−1, 0, 1], even now we
have φ(P2) = [1, 0] and eφ(P2) = 1. Consider a point at infinity P∞ = [i, 1, 0],
then φ(P∞) = [i, 1], tφ(P∞) = X − iY and

φ∗(X − iY ) : [X, Y, Z] 7→ X − iY.

A uniformiser at P∞ can be seen to be Z and hence, as

X − iY =
Z2

X + iY
,

eφ(P∞) = 2.
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We see that in the above example, for Q ∈ P1 we have∑
P∈φ−1(Q)

eφ(P ) = 2.

This is a special case of the below proposition.

Proposition A.43. Let φ : C1 → C2 be a rational map between smooth
curves. Define the degree of φ, denoted as deg(φ), to be the dimension of
K(C1) over φ∗(K(C2)). For Q ∈ C2, we have∑

P∈φ−1(Q)

eφ(P ) = deg(φ).

V.1 Ramification of elements from K(C)

An element f ∈ K(C) can be thought of as a rational map f : C → P1

defined by

f(P ) =

{
[f(P ), 1] if f is regular at P ,

[1, 0] otherwise.

We see that the ramification index of f at P is

ef (P ) = ordP (f − f(P ))

So if we assume that f : C → P1 ramifies at finitely many points, we get
f − f(P ) to be a uniformiser at all points P except for finitely many. The
excluded points are the poles of f and the points at which f ramifies. In
fact, it is true that f ramifies at only finitely many points, so we state this
as a lemma below.

Lemma A.44. For f ∈ K(C)∗, the map f : C → P1 ramifies at finitely many
points. Moreover, f − f(P ) is a uniformiser at all regular points except for
finitely many.

Proposition A.45. Let ω 6= 0 ∈ Ω(C). Then

ordP (ω) = 0

for all but finitely many P ∈ C.

By the above proposition we can attach a divisor to a differential ω ∈
Ω(C) as follows.

div(ω) =
∑
P∈C

ordP (ω)(P ).
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A divisor of this form is called a canonical divisor. For any two differentials
ω1, ω2 ∈ Ω(C) we have an f ∈ K(C)∗ such that ω1 = fω2 and hence

div(ω1) = div(f) + div(ω2)

So we see that deg(div(ω1)) = deg(div(ω2)).

Definition A.46. A differential ω ∈ Ω(C) is said to be holomorphic if
ordP (ω) ≥ 0 for all P ∈ C.

Example A.47 (Elliptic Curves). Consider the curve

C : y2 = (x− e1)(x− e2)(x− e3) = f(x)

with the point P∞ = [0, 1, 0] at infinity and let Pi = [ei, 0, 1], as before, for
i = 1, 2, 3. Let us consider the map

x =
X

Z
: C −→ P1.

For a point P = [a, b, 1] 6= Pi we see that (x− a) is a uniformiser and hence
ordP (dx) = ordP (d(x− a)) = 0. At Pi, we know that y is a uniformiser and
ordPi

(dx) = 1 as

dx =
2y

f ′(x)
dy.

At P∞, we have X/Y to be a uniformiser and we see that

ordP∞(x) = ordP∞(X/Z) = ordP∞(X/Y )− ordP∞(Z/Y ) = −2

and hence we get ordP∞(dx) = −3. So we have

div(dx) = (P1) + (P2) + (P3)− 3(P∞) = div(y).

Therefore, we have that dx/y is a holomorphic differential form on C.

VI Galois Theory of Elliptic Function Fields

By an elliptic function field, we mean the function field of an elliptic curve.
Consider a non-constant isogeny φ : E1 → E2 between two elliptic curves.
This induces the field extensions

φ∗(K(E2))

F

K(E1)

separable

Purely inseparable
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where degs(φ) = [F : φ∗(K(E2))] and degi(φ) = [K(E1) : F].

Theorem A.48. Let φ : E1 → E2 be a non-constant isogeny.

(a) For every Q ∈ E2,
#φ−1{Q} = degs(φ).

(b) For all P ∈ E1,
eφ(P ) = degi(φ).

(c) Let TP : E1 → E1 denote the translation-by-P map. The map

kerφ −→ Aut(K(E1)/φ∗(K(E2)))

defined by P 7→ T ∗P is an isomorphism.

(d) If φ is separable, then # kerφ = deg(φ) and K(E1) is a Galois extension
of φ∗(K(E2)).

Proof. cf. [Sil06], Chapter III, Theorem 4.1.

Corollary A.49. Let φ : E1 → E2 and ψ : E1 → E3 be isogenies such that φ
is separable. If Ker(φ) ⊆ Ker(ψ), then we have a unique isogeny λ : E2 → E3

such that the following diagram commutes.

E1 E2

E3

φ

ψ
λ

That is, λ ◦ φ = ψ.

Proof. By Theorem A.48(d), we have K(E1)/φ∗(K(E2)) to be a Galois ex-
tension and, as ker(φ) ⊆ ker(ψ), we have

Aut(K(E1)/φ∗(K(E2))) ⊆ Aut(K(E1)/ψ∗(K(E3))).

From this, we see that ψ∗(K(E3)) ⊆ φ∗(K(E2)) ⊆ K(E1). To proceed
further, we use the following lemma.

Lemma A.50. Let C1, C2 be curves defined over K. For an injective ring
homomorphism i : K(C2) → K(C1), there exists a unique morphism λ :
C1 → C2 such that λ∗ = i.
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From this lemma, as (φ∗)−1ψ∗ : K(E3)→ K(E2) is an injection, we have
λ : E2 → E3 such that

λ∗ = (φ∗)−1ψ∗ ; (λ ◦ φ)∗ = φ∗λ∗ = ψ∗.

It follows from the next lemma that λ ◦ φ = ψ.

Lemma A.51. Let λ1, λ2 : C1 → C2 be two morphisms between smooth
curves defined over K. Then, λ∗1 = λ∗2 implies λ1 = λ2.

Proof. Let λ1 = [g0, g1, g2] and λ2 = [f0, f1, f2] near a point P ∈ C1. We can,
WLOG, assume g0(P ) 6= 0. Let hi = [Xi, X0] ∈ K(C2) for i = 1, 2, we have

[gi, g0] = hi ◦ λ1 = hi ◦ λ2 = [fi, f0].

This implies that

fi =
f0

g0

gi.

Hence, λ1 = λ2 as morphisms.
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I `-adic Theory

Let Q` be the field of `-adic rational numbers.

Definition B.1 (Lie group over Q`). A topological group G is a Lie group
if it is a manifold over Q` and the maps

m : G×G→ G, (a, b) 7→ ab,

i : G→ G, a 7→ a−1

are locally analytic.

From the definition, we see that the left-multiplication-by-g map,

`g : G→ G, `g(h) = gh

and the conjugation-by-g map

τg : G→ G, τg(h) = ghg−1

are locally analytic. Moreover, they are Lie group isomorphisms.

Definition B.2 (Lie algebra of G). The Lie algebra g of G is the Q`-vector
space Te(G), with the Jacobian product,

[Xe, Ye](f) := Xe(Y (f))− Ye(X(f)),

where X, Y : G 7→ T (G) are (left invariant) vector fields defined by

Xg = Te`g(Xe), Yg = Te`g(Ye).

LetG be an `-adic Lie group, g = (Te(G), [·, ·]) be its Lie algebra, on which
G acts by the adjoint representation. Recall the adjoint representation of the
Lie group G is the representation

Ad : G→ GL(g),

where Ad(g) = Teτg : g
∼−→ g.
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I.1 M-dimension

For N ≥ 0, consider X = (Z`)N . As Z` is open in Q`, X is an N dimensional
manifold over Q`. For n ≥ 0, we define

Xn := X/`nX = (Z`/`nZ`)N ∼= (Z/`nZ)N .

Consider a closed subset Y of X and its image, call it Yn, under the
quotient map πn : X → Xn. We see that Y = lim←−Yn, projective limit of
compact Hausdorff topological spaces Yn. We have the commutative diagram,

Y Yn

Ym

πn

πm

for all m,n. This induces a continuous map π = (πn) : Y → lim←−Yn. The
injectivity follows from definition. Let (yn) ∈ lim←−Yn, we have a sequence
(sn) ∈ Y such that πn(sn) = yn. Also, as lim←−Yn ⊆ lim←−Xn

∼= X, we have an
x ∈ X such that πn(x) = yn for all n. Therefore, x− sn ∈ `nX for all n. As
{`nX}n forms a collection of basic neighbourhood around 0, we have sn → x
as n→∞, implying that x ∈ Y .

As Yn ⊆ Xn, we have |Yn| ≤ |Xn| = `nN .

Definition B.3. We define the M -dimension of a closed subset Y of X,
denoted dimM Y , as

dimM Y = inf{d ≥ 0 | |Yn| = O(`dN) for all n}. (B.1)

Theorem 3.9 is for closed subsets C of certain M -dimension. We now see
a proposition, which helps us weaken the hypothesis in the Theorem.

Proposition B.4 (cf. §3, Theorem 8, [Ser81]). If C is a closed submanifold
of an `-adic manifold X of dimension d, then dimM C ≤ d.

II Galois representations

A good reference for this section is [Bel08].
Let K be a number field.

Definition B.5. Let k be a topological field and GK = Gal(K/K) be the
absolute Galois group of the field K. A Galois representation of GK is a
continuous group homomorphism

ρ : GK −→ GLn(k).
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Note thatGK has the Krull topology and GLn(k) has the induced topology
from k. Galois representations usually arise when we have an action of the
absolute Galois group on a vector space over k. We will work with k = Q`.

Let us recall a bit of valuation theory. For a prime p in OK , we have a
prime p in OK such that p ∩K = p.

Dp(K) = {σ ∈ GK | σp = p} (Decomposition Group) (B.2)

Ip(K) = {σ ∈ GK | σ(x)− x ∈ p for all x ∈ OK} (Inertia Group). (B.3)

That is, we have the exact sequence

1 −→ Ip(K) −→ Dp(K) −→ Gal(Fp/Fp) −→ 1,

where Fp is the field with Np elements.
If v = vp is the valuation wrt p and Kv is the completion of K wrt v,

then Dp(K) ∼= Gal(Kv/Kv) and Ip(K) ∼= Gal(Kv/Kur), where Kur is the
maximal unramified extension of K in K. The isomorphism is induced by
the inclusion map,

Gal(Kv/Kv) ↪→ Gal(K/K), σ 7→ i ◦ σ ◦ i−1,

where i : K ↪→ Kv is the inclusion induced by p.

Remark B.6. The decomposition group and the inertia group are well de-
fined up to conjugacy, as they depend on the prime p in OK which lies above
p. In the definitions to follow, we see that they are same up to conjugacy.
i.e. That definitions doesn’t depend on the decomposition group we choose.

Definition B.7. A representation φ : GK → GLn(k) is said to be unramified
at prime p if it acts trivially on the inertia group Ip(K). i.e.

φ(Ip(K)) = 1.

For an prime p where φ is unramified, we can talk about the image of the
Frobenius substitution σp (also denoted Frobp).

Remark B.8. Say we have a Galois representation φ : GK → GLn(k) which
is unramified at a prime p. By continuity of φ, kerφ is a closed normal
subgroup of GK . By infinite Galois theory, we have a Galois extension L/K
such that kerφ = Gal(K/L). As φ is unramified at p, we have Ip(K) ⊆
Gal(K/L), implying that L ⊆ Kur. As the latter is unramifed at p, L is also
unramified at p.

Moreover, if L is unramifed at p, then, by a similar argument as above,
Ip(K) ∈ kerφ. i.e. φ is unramified at p.
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To summarise, if L is the fixed field of kerφ, we have a bijection between
the sets

{primes at which φ is unramified }
l

{primes at which L is unramified }

III Dirichlet Characters and their

Conductors

A Dirichlet character χ mod N is an arithmetical function induced by a
character (1-dim representation) χ on (Z/NZ)∗. We can talk about the
Dirichlet series L(s, χ) attached to a Dirichlet character χ.

Examples B.9.

(i) If N = 1, then there is only one Dirichlet character, which maps every
n to 1, mod 1. The Dirichlet series attached to this is the Riemann zeta
function.

(ii) If N = 3, and we have the character χ : {1, 2} → {±1}, the induced
Dirichlet character is,

χ(n) =


0 if 3|n,
1 if 3|n− 1, (n ≡ 1)

−1 if 3|n− 2. (n ≡ 2)

The Dirichlet series attached to this is

L(s, χ) =
∑
n≡1

n−s −
∑
n≡2

n−s.

III.1 Primitive Characters

Let χN mod N be a character and M be a multiple of N . We define a char-
acter χM mod M induced by χN , as χM(a) = χN(a). The well-definedness
follows as a ≡ b mod M implies a ≡ b mod N . We see that, if χM is induced
by χN , then χM(a) = χM(b) implies that χN(a−b) = 0, i.e. there is a divisor
d, induced modulus of χ, of N such that a ≡ b mod d. In particular, it holds
for d = N .

Definition B.10. A character χ mod M is said to be primitive if the smallest
induced modulus is M .
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Two characters χ1 mod N1 and χ2 mod N2 are said to be co-trained if
there exists an N such that, N1, N2|N and

χ1(n) = χ2(n) for all (n,N) = 1.

This is equivalent to saying that there exists a character χ mod N induced
by both χ1 and χ2. The co-trained relation between two characters is an
equivalence relation on the set of characters.

Proposition B.11. Two characters are co-trained if and only if they are
induced by a character.

Proof. Let χ1 mod N1 and χ2 mod N2 be characters, χD mod D be a charac-
ter induces them. We have χ1(a) = χD(a) for (a,N1) = 1, and χ2(a) = χD(a)
for (a,N2) = 1. Let N = N1N2, we have χ1(n) = χ2(n) = χD(n) for
(n,N) = 1.

Let χN be induced by χ1 and χ2. Let D be the smallest number such that
χN(a) = 1 when a ≡ 1 mod D. The character χD defined by χD(a) = χN(a)
induces χ1 and χ2.

Definition B.12. The conductor of a character ω is the least modulus of a
character in the equivalence class of ω.

By definition, the character with this least modulus is primitive.

Examples B.13. The character χ in Example (ii) is primitive, hence its
conductor is 3.
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