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1. INTRODUCTION

Fermat’s Last Theorem states that the equation Xn+Y n = Zn has no non-trivial integral solu-
tions in X,Y, Z for n > 2. Its proof, which took nearly about 350 years, is due to the settlement
of the Taniyama–Shimura–Weil conjecture (the modularity conjecture) by many mathematicians
starting from Wiles. There are certain (2-dimensional) Galois representations attached to ellip-
tic curves and Hecke eigenforms. The Taniyama–Shimura–Weil conjecture states that the Galois
representations attached to elliptic curves over Q must arise from a Galois representation at-
tached to a Hecke eigenform.

Throughout the notes, F is a number field (a finite extension of Q), F is a fixed algebraic
closure of F , and we denote GF for the absolute Galois group Gal(F/F ).

DEFINITION 1.1. For a topological ring R, a Galois representation of GF into R is a continu-
ous representation GF → GLn(R).

Remarks. In the above definition, the Galois group GF is endowed with the Krull topology. In
this topology, the basic open sets are of the form

B(σ, L) := {τ ∈ GF | τ = σ on L} = {τ ∈ GF | τσ−1 ∈ Gal(F/L)}.

Moreover, we have a topological group isomorphism (cf. Section 1.1)

GF
∼= lim←−

L/F finite

Gal(L/F ).

This makes the absolute Galois group of F a compact topological group. For infinite Galois
theory, a good reference is Neukirch [Neu99].
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EXAMPLE 1.2 (mod pm CYCLOTOMIC CHARACTER). Let p be a prime, m be a positive integer,
and let µp,m = {z ∈ C | zpm = 1} be the set of pm-th roots of unity. We have the representation

εp,m : GQ
restriction−−−−−−−→ Gal(Q(µp,m)/Q) ∼= (Z/pmZ)∗.

EXAMPLE 1.3 (TORSION POINTS OF AN ELLIPTIC CURVE). An elliptic curve over Q is a projec-
tive curve given by the equation of type,

y2 = x3 + ax+ b, a, b ∈ Q,

with a point [0, 1, 0] at infinity. Denote

E(Q) = {[x, y, 1] ∈ Q | y2 = x3 + ax+ b} ∪ {[0, 1, 0]}.

The set E(Q) forms a group under a specific operation +. For a positive integer m, define the
multiplication-by-m map by,

[m] : E(Q)→ E(Q), [m](P ) = P + · · ·+ P︸ ︷︷ ︸
m-times

Denote E[m] = ker[m]. An isomorphism E[m] ∼= (Z/mZ)2 and the action of GQ on E[m]
induces the representation,

ρE,m : GQ → AutZ((Z/mZ)2) ∼= GL2(Z/mZ).

1.1. Profinite groups. A directed set is a poset (I,≤) such that, for any a, b ∈ I, there is a c ∈ I
such that a ≤ c and b ≤ c.

Examples.
1. The usual partial order ≤ on R makes (R,≤) a directed set.
2. Consider the set (N,≤) where a ≤ b when b|a. This is a directed set as, for a, b ∈ N, we have

c = gcd(a, b) such that a ≤ c and b ≤ c.

Let (I,≤) be a directed set. The set of groups {Gi | i ∈ I} is called an inverse system with
respect to (group) homomorphisms {φj

i : Gj → Gi | i ≤ j} if:

1. φi
i : Gi → Gi is an isomorphism for all i ∈ I.

2. If i ≤ j ≤ k, then φk
i = φj

i ◦ φk
j .

Given an inverse system ({Gi}i∈I , {φj
i : i ≤ j}), we define its projective (or inverse) limit as

lim←−
i∈I

Gi := {(gi)i∈I | φj
i (gj) = gi for all i ≤ j} ⊆

∏
i∈I

Gi.

We have the natural projection maps πj : lim←−Gi → Gj for all j ∈ I. The projective limit satisfies
the following universal property: Given a group G with homomorphisms ϕi : G→ Gi such that
ϕi = φj

i ◦ ϕj , for all i ∈ I, then there is a unique homomorphism from ϕ : G→ lim←−Gi such that
ϕ ◦ πi = ϕi.

DEFINITION 1.4. A profinite group is a projective limit of finite groups.

Examples.
1. Let (N,≤) be a directed set with ≤ the partial order induced by the partial order on R. Given

a prime p, consider the set of groups {Z/pnZ}n∈N. For n ≤ m, define the map

φm
n : Z/pmZ→ Z/pnZ, a mod pm 7→ a mod pn.

We see that (Z/pnZ, {φm
n | n ≤ m})n∈N form an inverse system, whose projective limit is

isomorphic to Zp.



GALOIS REPRESENTATIONS 3

2. Let (N,≤) be the directed set with a ≤ b if b|a. Then we have the inverse system (Z/nZ)n∈N
where the morphisms φm

n : Z/mZ→ Z/nZ are defined by a 7→ a. The projective limit of this
system is denoted by Ẑ.

3. Given a Galois extension L/F , its Galois group Gal(L/F ) is isomorphic to the projective limit
of the inverse system

{Gal(E/F ) | E/F is finite, E ⊂ L}
with the restriction morphisms

φE′
E : Gal(E′/F )→ Gal(E/F ), σ 7→ σ|E ,

for F ⊂ E ⊂ E′. The isomorphism is given by

Gal(L/F )→ lim←−
E

Gal(E/F ), σ 7→ (σ|E)E .

If Fp is an algebraic closure of Fp, then Gal(Fp/Fp) ∼= Ẑ.

Let G = lim←−Gi be a profinite group. The topology on G is induced by the subspace topology
in

∏
Gi, where Gi’s are finite groups with discrete topology. Hence, due to Tychonoff’s theorem,

G is compact topological group. Moreover, it is seen to be Hausdorff and totally disconnected.

1.2. Ramification of a Galois representation. This section deals with Decomposition groups,
inertia groups, and Frobenius elements. A good reference is [Neu99]. Let K/F be an extension
of number fields. Let OK ,OF be their respective ring of integers (the integral closure of Z in the
extension). Since both are Dedekind domains, given a prime ideal p of OF , we have the unique
factorization of prime ideals

pOK =
∏
i

Pei
i ,

where the product is finite, Pi are prime (maximal) ideals in OK , and ei ≥ 1 are positive
integers.

DEFINITION 1.5. Let pOK =
∏

Pei
i . Then,

(1) the primes Pi are said to be the primes in K lying above p, (One also says Pi|p)
(2) a prime p of F is said to be ramified in the extension K if some ei > 1. Else, we say the

prime p is unramified in K.

Examples. Let F = Q, and K = Q(i). Therefore, OK = Z[i]. We have the following prime ideal
factorization.

(2) = (1 + i)2,

(5) = (2 + i)(2− i),

(3) = (3).

It is seen that only 2 is ramified in Q(i).

It is known that only finitely many primes ramify in a given finite extension of F .

1.2.1. Frobenius elements. Let K/F be a finite Galois extension of number fields. The Galois
group Gal(K/F ) acts transitively on the set of primes lying above p, i.e. if P1,P2 are primes
lying above p, then there is σ ∈ Gal(K/F ) such that σP1 = P2.

DEFINITION 1.6. Let P be a prime in OK , the ring of integers in K, lying above the prime p
of F . The decomposition group of P over K is the subgroup GP of the Galois group Gal(K/F )
which fixes P, i.e.

GP = {σ ∈ Gal(K/F ) | σP = P}.
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Let κ = OK/P, f = OF /p denote the residue fields. Then we have the exact sequence

1→ IP → GP
τ−→ Gal(κ/f)→ 1,

where IP = ker τ is defined to be the inertia group of P over K. If p is unramified, then we see
that IP = 1 for any prime P lying above p. In this case, the Frobenius element σP is the element
in GP which maps to the Frobenius element of Gal(κ/f) under τ . Given another prime P′ lying
above p, the elements σP and σP′ are conjugates in Gal(K/F ). We denote this conjugacy class
by σp.

1.2.2. Ramified places of a Galois representation. Let F be a number field. For a prime p in F ,
let p be a prime in F lying above p, i.e. p∩OF = p. Define the decomposition group Dp of p over
F as,

Dp = lim←−
P

DP,

where the projective limit is over primes P in a finite Galois extension of F , lying above p.
Similarly as before, we have the exact sequence

1→ Ip → Dp → Gal(Fq/Fq)→ 1,

where q = |f|. The normal subgroup Ip is called as the inertia group at a place p lying above p.
Similarly as before, by changing the prime lying above p, we get a conjugate subgroup of Dp.
We denote this conjugacy class by Dp. Let σp be the conjugacy class of Frobenius elements, as
before, in Dp for a p|p.

DEFINITION 1.7. A representation ρ : GF → GLn(R) is said to be unramified at p if ρ(Ip) = 1,
for a place p|p. A prime at which ρ isn’t unramified is called a ramified prime.

Remarks.
1. Note that the above definition doesn’t depend on the place p above p as any two inertia

groups are conjugates.
2. If ρ is unramified at a place p, then ρ(σp) is a well-defined element of GLn(R).

EXAMPLE 1.8 (p-ADIC CYCLOTOMIC CHARACTER). Earlier, we saw the mod pm-cyclotomic
character εp,m : GQ → (Z/pmZ)∗. Similarly, we get the p-adic cyclotomic character

εp : GQ
restriction−−−−−−−→ Gal(Qp,∞/Q) ∼= Z∗

p,

where Qp,∞ = Q(∪mµp,m) is the minimal Galois extension Q containing all p-power roots of
unity. One can prove the following properties of the cyclotomic character εp.

1. εp is surjective (hence has infinite image).
2. p is the only ramified prime of εp.
3. εp(σq) = q for all q ̸= p.

PROPOSITION 1.9. A Galois representation ρ : GF → GLn(R) with finite image ramifies at
only finitely many primes (i.e. the set of ramified primes is finite). Moreover, it factors through
Gal(K/F ) for some finite Galois extension K/F .

Proof. We know that ker ρ is a closed subgroup of GF . Hence, by the fundamental theorem of
infinite Galois theory, there is a Galois extension K/F such that Gal(F/K) = ker ρ. Therefore,
we get an injective map ρ : Gal(K/F ) → GLn(R). Hence, K/F is finite. Moreover, primes at
which ρ ramifies are the primes in F which ramify in K, which are finite. □
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1.3. The Artin L-functions. The study of L-functions is central to number theory. A famous
example is the Riemann zeta function ζ(s) defined by

ζ(s) =
∑
n≥1

1

ns
=

∏
p

(1− p−s)−1,

for s ∈ C with Re(s) > 1. A generalisation of the Riemann zeta function is the Dedekind zeta
function of a number field F , defined by

ζF (s) =
∑
a

1

(Na)s
=

∏
p

(1−Np−s)−1,

where Re(s) > 1, and the sum is over all integral ideals a of the ring of integers OF of F . Here,
Na denotes the norm of the ideal a in OF . If a =

∏r
i=1 p

ei
i , then

Na :=
r∏

i=1

(Npi)
ei ,

where Npi := [OF /pi : Fp].
Given a (mod m) Dirichlet character χ : Z → C, attached to a character (Z/nZ)∗ → C∗, we

have the Dirichlet L-function defined by

L(s, χ) :=
∑
n≥1

χ(n)

ns
,

where s lies in the half plane of convergence. Since χ is completely multiplicative, we have the
Euler product,

L(s, χ) =
∑
n≥1

χ(n)

ns
=

∏
prime p

(1− χ(p)/ps)−1,

where s lies in the half plane of convergence.
If χ is a non-trivial character (mod m), i.e. its reduction to (Z/mZ)∗ is not the trivial map,

then L(1, χ) converges and is nonzero. This fact is used in proving Dirichlet’s theorem for
primes in arithmetic progression.

Can we extend the idea of the construction of a Dirichlet L-series to non-abelian representa-
tions? Given a representation Γ → GLn(C) of a certain group Γ, can we attach an L-series to
it? The answer is yes, when Γ is a Galois group over a number field.

DEFINITION 1.10. A Galois representation GF → GLn(C) is called as an Artin representation.

Due to the vast difference between C and a profinite group G, we have the following result.

PROPOSITION 1.11. A continuous representation G → GLn(C) of a profinite group G has
finite image.

Proof. To be filled later. □

From Proposition 1.9, any Artin representation is ramified at only finitely many places.
Hence, every Artin representation factors through a finite Galois extension.

1.3.1. Local Euler factors of an Artin representation. Let F be a number field, and let ρ : GF →
GLn(C) be a Galois representation. Define Vp to be the subspace of Cn fixed by (an) inertia
group at p. Note that Vp doesn’t depend on the inertia group chosen. It is easy to see that
Vp = Cn if and only if ρ is unramified at p. The local Euler factor of ρ at p is defined to be

Lp(s, ρ, F ) = det(I −N(p)−sρ(σq)|Vp),

where σp is the Frobenius element at p
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DEFINITION 1.12 (ARTIN). Let ρ : GF → GLn(C) be a continuous representation. Define
the Artin L-function as

L(s, ρ, F ) :=
∏
p

Lp(s, ρ, F ),

for s ∈ C such that the Euler product converges.

Examples.
1. Let F = Q, and let ρ : GF → GLn(C) be the trivial homomorphism. Then we have

L(s, ρ, F ) =
∏
p

det(In − p−sIn)
−1 = ζ(s)n.

2. The Artin L-function attached to the (mod m) cyclotomic character εm : GQ → C∗ is equal
to the Dirichlet L-function attached to the character

(Z/mZ)∗
∼=−→ Gal(Q(ζm)/Q)

ρ−→ C∗,

where ζm is a primitive m-th root of unity.
3. Let F = Q, and let K = Q(i) ⊂ C. We have an isomorphism

Gal(K/F )→
{
I2,

(
0 1
1 0

)}
,

which induces a representation ρ : GQ → GL2(C). For p ≡ 1 mod 4, we have ρ(σp) = I2,

and for p ≡ −1 mod 4, we have ρ(σp) =

(
0 1
1 0

)
. Also, V2 = (e1 + e2)C implies that

L2(s, ρ,Q) = 1− 2−s. Therefore, the Artin L-function attached to ρ is

L(s, ρ,Q) = (1− 2−s)
∏
p≡1

(1− p−s)−2
∏
p≡−1

(1− p−2s)−1.

Moreover, we see that L(s, ρ,Q) = L(s, ρ1,Q)L(s, ρ2,Q) where ρ1, ρ2 : GF → Gal(K/F ) →
C∗ are the two irreducible representations of GF , and ρ = ρ1 ⊕ ρ2. It is also seen that
L(s, ρ,Q) = ζK(s) and, if ρ1 is the trivial representation, L(s, ρ1,Q) = ζF (s). Hence,

ζK(s) = ζF (s)L(s, ρ2,Q).

Remarks (Properties of Artin L-functions, [Mur01], p. 15).
a) If ρ1, ρ2 : GF → GLn(C) are two Galois representations, then

L(s, ρ1 ⊕ ρ2, F ) = L(s, ρ1, F )L(s, ρ2, F ).

In particular, For a finite Galois extension K/F , the Artin L-function of the Galois represen-
tation rK extending the left regular representation on Gal(K/F ) is

L(s, rK , F ) =
∏
ρ

L(s, ρ, F )dim ρ,

where the product is taken over all irreducible representations ρ : GF → GLn(C) factoring
through Gal(K/F ). It can be seen that L(s, rK , F ) = ζK(s) (cf. Remarks b), giving the
equation,

ζK(s) = ζF (s)
∏
ρ̸=1

L(s, ρ, F )dim ρ.

b) Let K/F be a finite Galois extension, H be a subgroup of G = Gal(K/F ). By Galois the-
ory, H = Gal(K/KH) where KH is the fixed field of H. Let τ : GKH → GLn(C) be a
representation factoring through H. Then, we have

L(s, τ,KH) = L(s, indGHτ, F ).
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CONJECTURE 1.1 (ARTIN). The L-function attached to a non-trivial irreducible representation
Gal(K/F )→ GLn(C) admits an analytic continuation to the whole complex plane.

2. THE CHEBOTAREV DENSITY THEOREM

Using the analytical properties of the Artin L-function (cf. [Mur01, p. 20]) we get the
Chebotarev’s density theorem, a generalisation of the Dirichlet’s theorem. Let F be a number
field and let OF be its ring of integers. By a prime in F , we mean a prime (or maximal) ideal in
OF . For a prime ideal p, define its norm by

Np := |OF /p|.

EXAMPLE 2.1. Let F = Q(i) be the field of Gaussian numbers. Its ring of integers is Z[i]. For
a prime p in F , let p ∈ Z be the prime lying below it, i.e. p ∩ Z = pZ. We see that,

Np =

{
p2 if p ≡ 3 mod 4,

p otherwise

DEFINITION 2.2. Let A be a subset of primes in F . Let PA(x) = {p ∈ A | Np ≤ x} and let
PF (x) = {p | Np ≤ x}.
1. The natural density d(A) of A is defined as

d(A) = lim
x→∞

|PA(x)|
|PF (x)|

=
|PA(x)|
x/ log x

.

2. The Dirichlet density δ(A) of A is defined as

δ(A) = lim
s→1

∑
p∈A 1/Nps∑
p 1/Np

s
.

By density of a set, we usually mean natural density.

Examples.
1. A finite set of primes has density zero.
2. By Dirichlet’s theorem, the set of primes of the form 1 + 4k has density 1/2.
3. The set of primes ending with 1 has no natural density.
4. Let F = Q(i) and A = {p | p = pZ[i], p ≡ 3 mod 4}. For a prime p ∈ PA(x), we see that

p ≤
√
x. Hence, we have |PA(x)| ≤ π(

√
x). Hence,

d(A) ≤ lim
x→∞

π(
√
x)

x/ log x
= 0.

Therefore, d(A) = 0. Moreover, since Np = p2, we see that
∑

p∈A 1/Nps =
∑

p∈A 1/p2s <∞
for Re(s) > 1/2. Therefore, δ(A) = 0.

THEOREM 2.3 (CHEBOTAREV). Let K/F be a finite Galois extension of number fields, G =
Gal(K/F ) be its Galois group, and let C be a conjugacy class of G. Then the density of (unramified)
primes p of F such that σp = C is |C|/|G|.

EXAMPLE 2.4. Taking K = Q(ζn), the n-th cyclotomic field, and F = Q, we have Dirichlet’s
theorem for primes in arithmetic progression.

An important consequence of Theorem 2.3 is the following result regarding the Frobenius
elements in a Galois extension.

COROLLARY 2.5. Let K/F be a Galois extension of number field, unramified outside a finite
set S of places of F . Then, the set {σp | p ̸∈ S} is dense in Gal(K/F ).
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Proof. Let σ ∈ Gal(K/F ), and let X = σGal(K/L) be a basic open set around σ. By the classical
Chebotarev density theorem for the finite extension L/F , there is a place v, unramified in L,
such that the Frobenius element at v in Gal(L/F ) is equal to σ|L. Since K/F is unramified
outside a finite set S, one can choose v ̸∈ S such that σv|L = σ|L. □

There is a version of Chebotarev density theorem for infinite Galois extensions unramified
outside a finite set of places. For the following, we refer to [Ser98, §I.8 Corollary 2].

PROPOSITION 2.6 (INFINITE CHEBOTAREV DENSITY THEOREM). Let K/F be an infinite Galois
extension unramified outside a finite set of places, G = Gal(K/F ) be its Galois group with a Haar
measure µ. Let X be a closed subset of G, stable under conjugation, with its boundary having zero
measure. Then, the density of (unramified) primes p of F such that σp ⊂ C is µ(X)/µ(G).

Remarks.
1. For an algebraic version of Chebotarev density theorem, we refer to Rajan [Raj98, Theorem 3].

This will be stated later, and used, for getting certain multiplicity one theorems.
2. In the statement of Proposition 2.6, one can consider K/F to be unramfied outside a set of

density zero. Hence, even Corollary 2.5 extends to Galois extensions unramified outside a
set of density zero.

3. TRACES OF GALOIS REPRESENTATIONS

This section deals with the question: Can traces tell something about the representations? We
know from the representation theory of finite groups, two complex representations (semisimple
due to Maschke’s theorem) of a finite group with equal traces are isomorphic to each other. The
following theorem of Brauer–Nesbitt generalises this statement.

THEOREM 3.1 (BRAUER–NESBITT). Let G be a group, E be a field of characteristic zero, and
let ρ1, ρ2 be two semisimple representations of G into GLn(E). If the traces of ρ1(g) and ρ2(g) are
equal for all g ∈ G, then ρ1 is isomorphic to ρ2.

By the fact that the Frobenius elements at unramified places are dense in GF , we have the
following corollary.

COROLLARY 3.2. Let ρ1, ρ2 : GF → GLn(E) be two semisimple Galois representations unram-
fied outside a finite set S, T be a finite set of places of Q, and let Tr(ρ1(σp)) = Tr(ρ2(σp)) for all
p ̸∈ S ∪ T . Then ρ1 is isomorphic to ρ2.

Proof. Follows by the fact that ρ1, ρ2 are continuous, and the fact that {σp | p ̸∈ S ∪ T} is dense
in GF . The latter fact follows by the Chebotarev density theorem. □

By Remark 2, one can assume S, T are of density zero in Corollary 3.2.

3.1. Multiplicity one theorems. The name multiplicity one theorems has to do with multiplicity
of certain representations appearing in the theory of automorphic forms and representations,
but the naive philosophy is: two objects which satisfy a same local property at "many" places are
"same" globally. Corollary 3.2 is one such multiplicity one property for Galois representations.

3.1.1. Elliptic curves. Let (E,O) be an elliptic curve over Q, i.e. a smooth projective curve of
genus 1 defined over Q with the point O at infinity. It can be thought of, by the Riemann–Roch
theorem, as a projective curve (over Q) in P2

Q of the form,

y2 = f(x) = x3 + ax+ b, a, b ∈ Z,
where f(x) has distinct roots and [0, 1, 0] is the point at infinity. Again due to the Riemann–Roch
Theorem (RRT), there is an addition law on E making it an abelian group with O as its identity.
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DEFINITION 3.3 (CF. [Sil09]). An isogeny between two elliptic curves (E,O) and (E′,O′) is
a morphism E → E′ sending O 7→ O′. Two elliptic curves E,E′ are said to be isogenous if there
is a non-zero isogeny E → E′. If the isogeny is given by a set of polynomials over an extension
K of Q, then it is said to be defined over K.

It is seen that an isogeny between two elliptic curves is a homomorphism of groups. Let
E : y2 = x3 + ax + b be an elliptic curve over Q with a, b ∈ Z. For a prime q consider the
reduction mod q of E, denoted by Ẽq, over the finite field Fq given by equation

y2 = x3 + ax+ b,

where x is the image of x under the reduction (mod q) map Z→ Fq.

DEFINITION 3.4. A prime q ∈ Z is said to be a prime of good reduction for E if Ẽq is an
elliptic curve over Fq.

It is known that the primes of bad reduction are finite. Our main motivation is to answer, in
some sense, the following question.

QUESTION 3.5. Given two elliptic curves E and E′ over Q, if |Ẽq(Fq)| = |Ẽ′
q(Fq)| for almost

all q, then what can you say about E and E′?

Let us answer the above question with the help of Galois representations and the Brauer–
Nesbitt theorem.

PROPOSITION 3.6 (THEOREM 9.4.1, [DS05]). Let E/Q be an elliptic curve. Let ρE,p : GQ →
GL2(Qp) be the p-adic Galois representation attached to the elliptic curve E induced by the action
of GQ on the Zp-Tate module Tp(E) = lim←−m

E[pm] of E. Then,

(a) ρE,p is an irreducible representation.
(b) If σq is the Frobenius at a good (unramified) prime q, then

Tr(ρE,p(σq)) = aq(E) := 1 + q − |Ẽq(Fq)|(1)

det ρE,p(σq) = q.(2)

From now on, unless specified, by a p-adic Tate module, we mean the Qp-vector space
Vp(E) := Tp(E)⊗Qp with the action of GQ via ρE,p.

THEOREM 3.7. Let E,E′ be elliptic curves over Q. The following statements are equivalent:

(a) E and E′ are isogenous.
(b) The p-adic Tate modules of E,E′ are isomorphic as Galois representations for all primes p.
(c) |Ẽq(Fq)| = |Ẽ′

q(Fq)| for all most all primes q.

Given an isogeny φ : E → E′, we have the following restriction map E[m]→ E′[m] for every
m ≥ 1. It is well-defined as φ is a homomorphism. This induces a map on the p-adic Tate
modules

φp : Tp(E)→ Tp(E
′).

If φ is defined over Q, then φp is an inter-twinning operator between the Tate modules. This
gives an injective map HomQ(E,E′) ↪→ HomGQ(Tp(E), Tp(E

′)), where HomQ(E,E′) denotes
the group of all isogenies defined over Q and HomGQ(Tp(E), Tp(E

′)) is the group of GQ inter-
twinning operators of the Tate modules. Moreover, we have the following isogeny theorem due
to Faltings, which was conjectured by Tate.
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PROPOSITION 3.8 ( [Sil09], THEOREM III.7.7). Let E,E′ be elliptic curves over Q, and let p
be a prime. The map φ 7→ φp induces an isomorphism

(3) HomQ(E,E′)⊗ Zp
∼= HomGQ(Tp(E), Tp(E

′)).

COROLLARY 3.9. Two elliptic curves E,E′ over Q are isogenous if and only if their Tate modules
(or the p-adic Galois representations attached to them) are isomorphic.

Proof. Since Qp is a torsion free module over the DVR Zp, Qp is flat over Zp. Hence,

HomQ(E,E′)⊗Qp
∼= HomGQ(Vp(E), Vp(E

′)).

This implies that, if the Tate modules of E,E′ are isomorphic, then HomQ(E,E′) ̸= 0, i.e. E
and E′ are isogenous.

Let φ : E → E′ be a non-zero isogeny. Then, there is the dual isogeny φ̂ : E′ → E such that
φ ◦ φ̂ = [degφ]. This implies,

det(φp) det(φ̂p) = det([degφ]p).

By [Sil09, Proposition III.8.6], φp is invertible in GL2(Qp), and hence is an isomorphism be-
tween the Tate modules. □

Proof of Theorem 3.7. From Corollary 3.9, (a) and (b) are equivalent. Moreover, it is immediate
that (b) implies (c). Assume (c) holds. Then, except for a finite set of primes of bad reduction
of both E and E′, we have Tr(ρE(σq)) = Tr(ρE′(σq)). Therefore, by Corollary 3.2, the represen-
tations ρE and ρE′ are isomorphic. This in turn means that Vp(E) and Vp(E

′) are isomorphic,
and hence E/E′ are isogenous. □

Remarks. One can replace Q by a number field in all the theorems of this subsection. Moreover,
due to the strong multiplicity one theorem of Rajan stated below (cf. Theorem 3.10), conjec-
tured by Ramakrishnan [Ram94], we know that, if |Ẽq(Fq)| = |Ẽ′

q(Fq)| for a set of primes q
with density > 1− 1/(2 · 22) = 7/8, then E and E′ are isogenous.

THEOREM 3.10 (THEOREM 1, [Raj98]). Let ρ, ρ′ : GF → GLn(K) be two semisimple p-adic
Galois representations, unramified outside a finite set S. If the set

SM(ρ, ρ′) := {p ̸∈ S | Tr(ρ(σp)) = Tr(ρ′(σp))}

has density > 1− 1/2n2, then ρ and ρ′ are isomorphic.

3.1.2. Modular forms. In this section, we state the theorem of Deligne regarding Galois repre-
sentations attached to Hecke eigenforms of weight > 1. By the traces of the attached Galois
representations, using Corollary 3.2, we get certain multiplicity one results for modular forms.

Let N and k be natural numbers, Γ0(N) be the set of matrices
(
a b
c d

)
in Γ = SL2(Z) such

that N |c. Let H = {x+ iy ∈ C | y > 0} be the upper half plane and let χ : Z→ C∗ be a modN
Dirichlet character.

DEFINITION 3.11. A holomorphic function f : H→ C is said to be a modular form of weight
k, level N , and of nebentypus χ if,

(1) the following modularity condition holds

f

(
az + b

cz + d

)
= (cz + d)kχ(d)f(z),

(
a b
c d

)
∈ Γ0(N),

(2) the function f(γz) is holomorphic (bounded) at i∞ for all γ ∈ Γ. If f(γz) vanishes at
i∞ for every γ ∈ Γ, then we call f a cusp form.
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A modular form f as defined above has a Fourier expansion f(z) =
∑

m≥0 af (m)qm, where
q = e2πiz and z ∈ H. Studying these Fourier coefficients is one of the main aims for number the-
orists. One usually attaches a Dirichlet series to a modular form and study its analytic properties
(analytic continuation and functional equation). We see later that the Fourier coefficients of an
eigenform has nice properties. Moreover, the Dirichlet series attached to such an eigenform has
a Euler product.

Examples.
1. Ramanujan ∆ function is the normalized cusp form of weight 12, and level 1. It’s Fourier

expansion at i∞ is given by

∆(z) = q
∏

(1− qn)24 =
∑
m≥1

τ(m)qm.

Lehmer’s conjecture states that τ(m) is a non-zero integer for all m.
2. Let χ : Z→ C∗ be a modN Dirichlet character, then the function

(∆⊗ χ)(z) :=
∑
m≥1

χ(m)τ(m)qm,

is a modular form of weight 12, level N2, and with nebentypus χ2.
3. ([Shi94, Proposition 3.64]) More generally, given a modular form f of weight k, level N ,

with nebentypus χ, then, for a modD Dirichlet character ε, the function f ⊗ ε is a modular
form of weight k, level ND2, with nebentypus χε2.

Denote M(k,N, χ) for the finite dimensional C-space of modular forms of weight k, level N ,
and nebentypus χ. Let S(k,N, χ) be the subspace of cusp forms. Let us define the following
Hecke operators (cf. [Ser81, §7, p. 373], [DS05, Proposition 5.2.2]) Tn’s on M(k,N, χ) as
follows: For f(z) =

∑
m≥0 af (m)qm,

Tn(f) :=
∑
m≥0

 ∑
d|(m,n)

χ(d)af

(mn

d2

) qm.

DEFINITION 3.12. A non-zero modular form f ∈ M(k,N, χ) is called a (Hecke) eigenform
if it is an eigen vector for all the Hecke operators Tn, for n ≥ 1.

Note the above definition makes sense as the Hecke operators commute with each other. The
Ramanujan ∆ function is an eigenform, since M(12, 1, 1) is a one-dimensional vector space.

PROPOSITION 3.13 (THE FOURIER COEFFICIENTS OF AN EIGENFORM). Consider a non-zero
Hecke eigenform f(z) =

∑
m≥0 af (m)qm with af (1) = 1. Then,

a) Tn(f) = af (n)f , for all n ≥ 1.
b) af (m)af (n) =

∑
d|(m,n) χ(d)af (mn/d2).

c) af (n) is an algebraic integer for all n ≥ 1. Moreover, they lie in a number field. (cf. [RS11, p.
6], [DS74, Proposition 2.7.3])

Let Kf := Q({af (n), χ(n)}n≥1) be the number field associated to a normalised Hecke eigen-
form f . Let Of be the ring of integers in Kf . For a rational prime p, let p be a prime in Of lying
above it. Let Kp denote the completion of Kf with respect to the p-adic topology.

PROPOSITION 3.14 (THÉORÈME 6.1, [DS74]). Let f ∈ M(k,N, χ) be a Hecke eigenform of
weight k ≥ 2. Given a prime p, there is a unique semisimple p-adic Galois representation

ρf : GQ → GL2(Kp),
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unramified at primes q ̸ |Np, such that

Tr(ρf (σq)) = af (q);(4)

det(ρf (σq)) = χ(q)qk−1.(5)

Remarks. The uniqueness is seen by Corollary 3.2: if any other representation has same trace
as ρf at σq, for all most all q, then it is isomorphic to ρf . From [Rib77, §3, Corollary 3.1] we
see that Kf = Q({af (p)}).

PROPOSITION 3.15 (CF. COROLLAIRE 6.3., [DS74]). Let f ∈M(k,N, χ) and f ′ ∈M(N ′, χ′, k′)
be two normalized eigenforms. If af (q) = af ′(q) for all primes q in a set of density 1, then
k = k′, χ = χ′, and af (q) = af ′(q) for all primes q ̸ |NN ′.

Proof. Let ρf , ρf ′ be the corresponding p-adic Galois representation attached to f, f ′. From
Proposition 3.14, and Chebotarev density theorem, we have ρf ∼ ρf ′ . This implies

χ(q)qk−1 = χ′(q)qk
′−1,

for all prime q ̸ |NN ′. As χ, χ′ are finite ordered (of order ϕ(N), ϕ(N ′) respectively), we have
k = k′ and χ = χ′. □

Note that the levels may be different. For example, let f ∈ M(k,N, χ), 1D be the trivial
mod D Dirichlet character, and let g = f ⊗ 1D be a modular form in M(k,ND2, χ). We have

ag(p) = af (p), for all p ̸ |D.

Hence, the Galois representations ρf , ρg are isomorphic.

3.1.3. CM forms. In this section, we define the notion of a modular form with complex multi-
plication.

DEFINITION 3.16 (CF. [Rib77], P. 34). For a non-trivial (mod D) Dirichlet character ε, we
say a Hecke eigenform f ∈M(k,N, χ) has complex multiplication by ε if

af (p) = ε(p)af (p),

for p in a set of primes of density one.

Remarks. The above notion can be defined as follows. A Dirichlet character ε : (Z/DZ)∗ → C∗

induces a linear map M(k,N, χ) → M(k,ND2, χε2) sending f 7→ f ⊗ ε. If f is a Hecke
eigenform with complex multiplication by ε, then Tr(ρf (σp)) = Tr(ρf⊗ε(σp)) for primes in
density one set. Hence, ρf and ρf⊗ε are isomorphic, af (p) = ε(p)af (p) for p ̸ |N , and ε(p)2 = 1
for p ̸ |ND. Let L be the imaginary quadratic field fixed by the kernel of the map

ε̃ : Gal(Q(ζND2)/Q)→ (Z/ND2Z)∗ ε−→ {±1},

where ζND2 is a primitive ND2 root of unity. For a prime p, co-prime to ND2, we see that
ε̃(σp,L) = ε(p), where σp,L is the Frobenius of L at p, as ε̃ is the composition of ε and the
mod ND2 cyclotomic character. Moreover, we see that ϵ(p) = −1 if and only if p is inert in L,
i.e. when σp,L ̸= 1. Hence, af (p) = 0 for inert primes p.

EXAMPLE 3.17 (A NON-CM EIGENFORM: RAMANUJAN ∆ FUNCTION??). We prove that
∆(z) =

∑
n≥1 τ(n)q

n is non-CM. Assume it is CM, i.e. there is a non-zero modD Dirichlet
character ε such that τ(p) = τ(p)ε(p) for all p ̸ |D. We have τ(p) = 0 for all primes p inert in an
imaginary quadratic extension L of Q.
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3.1.4. Results of Rajan and Murty–Pujahari. Rajan’s theorem [Raj98, Corollary 1] can be stated
as follows:

THEOREM 3.18. For i = 1, 2, let fi ∈M(ki, Ni, χi) be two eigenforms, at least one non-CM. If
the set of all primes p at which af1(p) = af2(p) has positive upper density, then there is a Dirichlet
character ε such that f1 = f2 ⊗ ε.

The following is a multiplicity one theorem by Murty–Pujahari.

THEOREM 3.19 ([MP17], THEOREM 1.1). For i = 1, 2, let fi ∈ M(ki, Ni, χi) be two eigen-
forms, at least one non-CM. if the set of all primes p at which af1(p)/p

k1−1 = af2(p)/p
k2−1 has

positive upper density, then there is a Dirichlet character ε such that f1 = f2 ⊗ ε.

Due to Proposition 3.15, Theorem 3.18 is implied by Theorem 3.19. Patankar and Rajan
[PR17] proved Theorem 3.19 using representation theoretic methods via the attached Galois
representations to a Hecke eigenform. Note that in the theorems of Rajan, Murty–Pujahari, if
f1, f2 are of the same level, then they must be same. If f1 = f2 ⊗ ε for a mod D Dirichlet
character, then the level N1 of f1 is N2D

2. If D ̸= 1, there is a natural number d such that d|D
but d ̸ |N . We see that

χ1(d)f1(z) = f1|⟨d⟩(z) = (f2 ⊗ ε)|⟨d⟩(z) = 0.

This implies f1 = 0. Hence, we have D = 1 and f1 = f2.
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