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In this article, we prove that for a convergent sequence 
of residually absolutely irreducible representations of the 
absolute Galois group of a number field F with coefficients 
in a domain, which admits a finite monomorphism from a 
power series ring over a p-adic integer ring, the set of places 
of F where some of the representations ramifies has density 
zero. Using this, we extend a result of Das–Rajan to such 
convergent sequences. We also establish a strong multiplicity 
one theorem for big Galois representations.
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1. Introduction

1.1. Motivation

The study of the representations of the absolute Galois groups of number fields is a 
central theme in arithmetic. Given a smooth projective variety over a number field F , 
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its étale cohomology groups with coefficients in Qp are finite dimensional vector spaces 
over Qp and carry a continuous action of the absolute Galois group of F . Mazur intro-
duced deformation theory of Galois representations, and under suitable conditions, he 
proved that the universal deformation has coefficients in complete local Noetherian rings 
[Maz89]. Hida proved that the p-ordinary normalized Hecke eigen cusp forms can be in-
terpolated [Hid86a,Hid86b]. Hida’s work has been extended further by Coleman [Col96], 
Coleman and Mazur [CM98]. In these works, representations and pseudorepresentations 
of the absolute Galois groups of number fields with coefficients in rings of large Krull 
dimension have been studied. In this article, we study certain properties of continuous 
representations of the absolute Galois groups of number fields with coefficients in such 
rings.

1.1.1. Places of ramification
The continuous representations of the absolute Galois groups of number fields, that are 

of geometric origin, are known to be unramified almost everywhere. Ramakrishna con-
structed semisimple representations which are ramified at infinitely many places [Ram00]. 
Soon after, Khare and Rajan proved that the set of places of ramification of a continuous 
semisimple representation of the absolute Galois group of a number field with coefficients 
in a p-adic number field has density zero [KR01, Theorem 1]. There are related results 
in different contexts that were obtained by several authors. In 2003, Khare showed that 
for a converging sequence of residually absolutely irreducible p-adic representations of 
the absolute Galois group of a number field F [Kha03, Definition 1], the set of places 
of F where at least one of them ramifies has density zero [Kha03, Proposition 1]. This 
can be thought of as a refinement of the result of Khare–Rajan. The result of Khare–
Rajan has also been extended to representations with coefficients in valuation rings of 
mixed characteristic by Khare–Larsen–Ramakrishna [KLR05, Theorem 2.5]. Further, a 
related result has also been obtained by Bellaïche–Chenevier–Khare–Larsen [BCKL05, 
Theorem 3.7].

1.1.2. Potential equivalence and m-power characters
In a recent work, Das and Rajan proved that for representations of a group with 

coefficients in a non-archimedean local field, the notions of being potentially equivalent 
and elementwise potentially equivalent are equivalent [DR23, Theorem 4]. Further, for 
the representations of the absolute Galois groups of number fields, they established the 
equivalence between the property of being potentially equivalent, having equal m-power 
traces at the Frobenious conjugacy classes at a set of places of density one, and being 
m-trace equivalent [DR23, Theorem 7].

1.1.3. Big Galois representations
In 1980’s, Hida proved that the ordinary modular forms vary in families. More pre-

cisely, for each positive integer N and a prime p with p � N and Np ≥ 4, he constructed 
the universal p-ordinary Hecke algebra of tame conductor N and showed that the set 
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of its arithmetic specializations are in one-to-one correspondence with the p-ordinary 
p-stabilized eigen cusp forms of tame level a divisor of N . Further, the Galois represen-
tations associated with such forms can be interpolated by a big Galois representation 
through the corresponding arithmetic specializations [Hid86a,Hid86b]. The study of p-
adic families of automorphic forms has been pursued further by Hida [Hid95], Coleman 
[Col96], Coleman and Mazur [CM98], Buzzard [Buz07], Chenevier [Che04], Emerton 
[Eme06], Urban [Urb11] et al. This motivates us to look for analogues of the results 
of Khare–Rajan, Khare et al. for representations having coefficients in complete local 
Noetherian rings, for instances, the power series rings over a p-adic integer ring. It has 
been established that the result of Khare–Rajan has an analogue in the context of rep-
resentations with coefficients in rings that are of finite type over power series rings over 
p-adic integer rings [Sah19, Theorem 1].

1.2. Results obtained

In this article, we show that [Kha03, Proposition 1] also holds for sequences of repre-
sentations with coefficients in rings which are finite over power series rings over p-adic 
integer rings. More precisely, we establish that if O is an integral domain admitting a 
finite monomorphism from a power series ring with coefficients in a p-adic integer ring, 
then for a converging sequence {ρi} of residually absolutely irreducible representations 
of the absolute Galois group of a number field F with coefficients in O, the set of finite 
places of F where at least of one of the representations {ρi} ramifies has density zero. 
We refer to Theorem 2.3. This result is established by applying Proposition 2.5, which 
is an extension of [KR01, Proposition 1].

In Section 3, we prove results analogous to some of the results of Das and Rajan 
[DR23] for representations with coefficients in rings which are finite over power series 
rings over p-adic integer rings or in rings over affinoid algebras over p-adic number fields. 
The proofs of these extensions make use of the results of [DR23]. We end this section 
with an extension of [DR23, Theorem 7] to a convergent sequence of residually absolutely 
irreducible Galois representations (Theorem 3.7).

In Section 4, we obtain a strong multiplicity one result for big Galois representations 
(Theorem 4.1). This is an analogue of a result of Rajan [Raj98, Theorem 1], who es-
tablished an analogue of a conjecture of Ramakrishnan in the context of �-adic Galois 
representations. We obtain Theorem 4.1 as a consequence of [Raj98, Theorem 1].

2. Density of the places of ramification

In the following, L denotes a p-adic number field, and OL denotes its ring of integers. 
Let O be a local domain that admits a finite monomorphism from the power series ring 
OL[[X1, . . . , Xs]]. Denote the maximal ideal of O by m and the fraction field of O by 
K. We fix an algebraic closure K of K. Let F be a number field with a fixed algebraic 
closure F . Denote by GF the absolute Galois group Gal(F/F ) of F . Given a place q
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of F , denote Fq for the completion of F with respect to the q-adic topology on F . The 
decomposition group of F at q is denoted by GFq

, which is unique up to conjugates. 
Following [Kha03], we introduce the notion of uniform trace convergence for a sequence 
of representations with coefficients in O.

Definition 2.1. A sequence of Galois representations �i : GF → GLn(O) uniformly trace 
converges to a representation � : GF → GLn(O) if the trace of �i converges to the trace 
of � uniformly over GF , in the m-adic topology on O, as i → ∞.

Remark 2.2. Note that Definition 2.1 of uniform trace convergence makes sense for rep-
resentations with coefficients in a local domain (A, a). For another notion related to 
uniform trace convergent sequences, we refer to [BCKL05, Definition 1.1].

In this section, we establish the following result.

Theorem 2.3. Let ρi : GF → GLn(O) be a sequence of residually absolutely irreducible 
continuous representations converging to a continuous representation ρ : GF → GLn(O). 
The set of places of F where at least one of the representations ρi ramifies has density 
zero.

The result [Kha03, Proposition 1] of Khare on the places of ramification of a sequence 
of representations with coefficients in a p-adic number field extends, in some sense, 
the result [KR01, Theorem 1] of Khare–Rajan on the places of ramification of a single 
semisimple Galois representation. Theorem 2.3 extends the result [Kha03, Proposition 
1] to the places of ramification of a sequence of Galois representations with coefficients 
in power series rings over p-adic integer rings. Moreover, it also extends the recent result 
[Sah19] on the places of ramification of a big Galois representation to the places of 
ramification of a sequence of representations having coefficients in large rings. The key 
ingredient of the proofs of these results is [KR01, Proposition 1].

Before proceeding to the proof of Theorem 2.3, we introduce some notations following 
[KR01, p. 602]. Let (A, a) be a local domain and Γ be a group. For a representation 
� : Γ → GLn(A) and a positive integer r, the reduction of � modulo ar is denoted by 
� mod ar.

Definition 2.4. Let (A, a) be a local domain with residue characteristic p, equipped with 
the a-adic topology. For a continuous representation � : GF → GLn(A) and a positive 
integer r, let S�,r denote the set of finite places q of F not dividing p and having 
inertia degree 1 over Q such that the representation � mod ar is unramified at q and the 
representation �|GFq

mod ar admits a ramified lift over A, i.e., there exists a ramified 
representation GFq

→ GLn(A) whose reduction modulo ar is isomorphic to �|GFq
mod

ar.
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Now we establish the following proposition, which extends [KR01, Proposition 1]. 
Next, applying the proposition below, we will prove Theorem 2.3.

Proposition 2.5. Let ρ : GF → GLn(O) be a Galois representation which is semisimple 
after extending scalars to K. Then, the upper density of Sρ,m tends to zero, as m → ∞.

To prove the above result, we show that there exists a continuous map λ : O → OK

where OK denotes the ring of integers of a p-adic number field K (cf. Lemma 3.4) such 
that λ ◦ ρ is semisimple and Sρ,r is contained in Sλ◦ρ,r for any integer r ≥ 1, and use 
[KR01, Proposition 1].

Proof. By [Sah19, Proposition 4], there exists an element h ∈ O such that for any ring 
homomorphism λ : O → Qp with λ(h) �= 0, the representation λ ◦ ρ is semisimple. 
Given an integer r ≥ 1 and an element q ∈ Sρ,r, there exists a ramified representation 
ρr,q : GFq

→ GLn(O) which lifts ρ|GFq
mod mr. Let Mr,q denote a nonidentity element 

lying in the image of the inertia subgroup of GFq
under ρr,q. Consider the set of matrices 

Mr,q as r ranges over the set of positive integers and q ranges over the elements of Sρ,r. 
Note that this set is countable.

Given countably many nonzero elements of OL[[X1, . . . , Xs]], their images are nonzero 
for some continuous OL-algebra homomorphism from OL[[X1, . . . , Xs]] → Qp, as can 
be seen by considering suitable substitutions (for a proof, see [Sah19, Proposition 3]
for instance). Since O is finite over OL[[X1, . . . , Xs]], it follows that given countably 
many nonzero elements of O, their images are nonzero for some continuous OL-algebra 
homomorphism from O → Qp. It follows that there exists a continuous OL-algebra 
homomorphism λ : O → Qp such that λ(h) �= 0 and λ(Mr,q) is not equal to the identity 
matrix over Qp for any r ≥ 1 and for any q lying in Sρ,r. This implies that λ ◦ ρ is 
continuous and semisimple, and the representation λ ◦ ρr,q is ramified, for any r ≥ 1
and q ∈ Sρ,r. Since O is finite over OL[[X1, . . . , Xs]], the image λ(O) is contained in the 
valuation ring OK of some p-adic number field K. Note that for any q ∈ Sρ,r, the residual 
representation ρ mod m of ρ is unramified at q, and hence the residual representation 
of λ ◦ ρ is also unramified at q. Moreover, the representation λ ◦ ρr,q is a lift of the 
representation λ ◦ ρ|GFq

mod mr
K , where mK denotes the maximal ideal of OK . This 

shows that the set Sρ,r is contained in Sλ◦ρ,r for any r ≥ 1. As λ ◦ ρ is continuous and 
semisimple, by [KR01, Proposition 1], the upper density of Sλ◦ρ,r tends to zero, as r
tends to infinity. Hence, the result follows. �
Proof of Theorem 2.3. Let ε > 0 be given. Since {ρi} is a sequence of residually abso-
lutely irreducible representations and it converges uniformly to ρ, it follows from [Car94, 
Théorème 1] that ρ is also residually absolutely irreducible. In particular, ρ ⊗K is semisim-
ple. Hence, by Proposition 2.5, there exists a positive integer Nε such that the upper 
density of Sρ,j is less than ε for all j ≥ Nε. We fix an integer j ≥ Nε. Since {ρi} con-
verges to ρ, there exists a positive integer Nj such that the traces of the representations 
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ρi, ρ are equal modulo mj for any i ≥ Nj . So, for any i ≥ Nj , the residual represen-
tations attached to the representations ρi mod mj , ρ mod mj have the same traces, and 
since ρi is residually absolutely irreducible, it follows from [Car94, Théorème 1] that the 
representations ρi mod mj , ρ mod mj are isomorphic.

Let Ri denote the set of primes of F where ρi is ramified. Since ρi’s are residually 
absolutely irreducible, they are absolutely irreducible. Hence, by [Sah19, Theorem 1], the 
set Ri has density zero. This implies that the finite union ∪1≤i≤Nj

Ri also has density 
zero.

Let R′ be the set of places q ∈ ∪i>Nj
Ri such that q has inertia degree > 1 over Q or 

ρ mod mj is ramified at q. Since O is finite over OL[[X1, . . . , Xs]], it follows that the ring 
O/mj is finite and hence the set of places of ramification of ρ mod mj is finite. Therefore, 
excluding finitely many elements, the set R′ is contained in the set of places of F having 
inertia degree > 1. It follows that R′ has density zero.

Let q be an element of Ri \ R′ for some i > Nj . Note that ρi is a lift of ρ mod mj

to GLn(O) and ρi is ramified at q. Since q does not lie in R′, it follows that q has 
inertia degree 1 over Q and ρ mod mj is unramified at q. This shows that q lies in 
Sρ,j . Consequently, ∪i>Nj

Ri is contained in R′ ∪ Sρ,j . It follows that the upper density 
of ∪i>Nj

Ri is less than ε. Consequently, the set ∪i≥1Ri has upper density < ε. This 
completes the proof. �
Remark 2.6. It would be interesting to investigate whether Theorem 2.3 holds for a 
converging sequence of representations with coefficients in complete local Noetherian 
rings of characteristic zero and residue characteristic p. Note that the notion of uniform 
trace convergence makes sense for a sequence of representations with coefficients in a local 
ring. By the Cohen structure theorem, a complete local Noetherian ring is the quotient 
of a power series ring over a p-adic integer ring. But we do not know how to establish 
Theorem 2.3 when the coefficient ring O is a quotient of a such a power series ring. Our 
method does not seem to provide any insight. This has been one of the obstructions 
that has been observed in [Sah19] in an approach towards extending [KR01, Theorem 
1] to representations with coefficients in such rings. Further, it would also be interesting 
to investigate whether Proposition 2.5 holds for a representation with coefficients in a 
complete local Noetherian rings of characteristic zero and residue characteristic p.

3. Potential equivalence of representations

Let L be a p-adic number field. Let O be a domain that admits a finite monomorphism 
from the power series ring OL[[X1, . . . , Xs]], or O is an affinoid algebra over L. Let K
denote the fraction field of O, and K be a fixed algebraic closure of K . We recall some 
definitions and notations used in [DR23] in the context of representations of a group with 
coefficients in O. Given a representation ρ : Γ → GLn(O) of a group Γ and an integer 
m, the m-trace of ρ is the map χ[m]

ρ : Γ → O defined by g 
→ Tr(ρ(gm)).
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Definitions 3.1. Let Γ be a group. Two representations ρ1, ρ2 : Γ → GLn(O) are said to 
be

(i) m-trace equivalent if χ[m]
ρ1 = χ

[m]
ρ2 ,

(ii) potentially equivalent if their restrictions to a finite index subgroup of Γ are iso-
morphic over K ,

(iii) elementwise potentially equivalent if, given an element g ∈ Γ, there is a positive 
integer mg such that ρ1(g)mg and ρ2(g)mg are conjugates over K .

We establish the following result which is an analogue of [DR23, Theorem 4].

Theorem 3.2. Let ρ1, ρ2 : Γ → GLn(O) be representations which are semisimple after 
extending scalars to K. Then, the following are equivalent.

(a) ρ1, ρ2 are potentially equivalent.
(b) ρ1, ρ2 are elementwise potentially equivalent.
(c) There is a positive integer m, depending only on O and n, such that ρ1, ρ2 are m-trace 

equivalent.

Proof. It is clear that (a) implies (b). Using [DR23, Theorem 2], the implication from 
(c) to (a) follows. To obtain the implication from (b) to (c), it is enough to prove the 
following Lemma 3.3, a weaker version of [DR23, Lemma 5] for matrices with coefficients 
in O. �
Lemma 3.3. There is a positive integer m, depending only on O and n, with the following 
property: for g1, g2 ∈ GLn(O), if there is some positive integer k such that gk1 and gk2 are 
conjugates in GLn(K ), then gm1 and gm2 have the same traces.

The proof of Lemma 3.3 requires the following general lemma.

Lemma 3.4. There is a finite extension K/L such that the kernels of all the OL-algebra 
homomorphisms from O to OK form a dense subset of Spec(O).

Proof. We prove the result for O finite over a OL[[X1, . . . , Xs]], the affinoid algebra case 
is similar as affinoid algebras are finite over Tate algebras (due to Noetherian normal-
ization, [Bos14, Proposition 3, p. 32]). Let {x1, . . . , xr} be a generating set of O over 
OL[[X1, . . . , Xs]]. Let K denote the compositum of all subfields L′ of Qp containing L
as a subfield such that the extension L′/L has degree ≤ r. By Krasner’s lemma, K is 
a finite extension of L. We see that any element a ∈ O satisfies a monic polynomial 
of degree r with coefficients in OL[[X1, . . . , Xs]]. Therefore, if λ : O → Qp is an OL-
algebra homomorphism, then λ(a) satisfies a monic polynomial of degree r over OL, for 
all a ∈ O. This implies that any OL-algebra homomorphism λ : O → Qp has image 
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lying inside OK . Given a non-zero ideal I of O and a non-zero element a ∈ I, by [Sah19, 
Proposition 3], there exists λ : O → Qp, extending some OL-algebra homomorphism 
from OL[[X1, . . . , Xs]] → OL, such that a �∈ kerλ. Therefore, given a non-zero ideal I of 
O, there is an OL-homomorphism λ : O → OK such that I �⊆ kerλ. �
Remark 3.5. By the above lemma, we see that if a is an element of O such that λ(a) = 0
for all OL-algebra homomorphisms λ : O → OK , then a = 0.

Proof of Lemma 3.3. From our hypothesis, there exists a matrix M ∈ GLn(K ) such 
that

Mgk1 = gk2M.

By clearing out the denominators (and replacing M , if necessary), we can assume that 
M lies in Mn(O) with detM �= 0. By Lemma 3.4, there exists a finite extension K/L

such that the kernels of all the OL-algebra homomorphisms from O to K form a dense 
subset of Spec(O). Let m denote the number of roots of unity in the compositum of all 
degree n extensions of K. We prove that the traces of gm1 and gm2 are equal.

Let λ be an OL-algebra homomorphism from O to K. Suppose λ(detM) �= 0. Then, 
the matrices λ(g1)k and λ(g2)k are conjugates in GLn(K). By [DR23, Lemma 5], the 
matrices λ(g1)m, λ(g2)m are conjugates over GLn(K). In particular, we have Tr(λ(gm1 )) =
Tr(λ(gm2 )). So, the element (Tr(gm1 ) −Tr(gm2 )) detM lies in the kernels of all OL-algebra 
homomorphisms λ : O → K, and hence, it is equal to zero by Lemma 3.4. This shows 
that the traces of gm1 and gm2 are equal. �

Let F be a number field and for a non-archimedean place v of F , let Fv denote the 
completion of F with respect to v. For an inclusion i : F ↪→ F v, let iv : GFv

↪→ GF denote 
the induced inclusion. For an unramified place v of F , let Frobv denote the Frobenius 
element at v in the Galois group GFv

.

Definition 3.6 (cf. [DR23]). Let T be a set of places of F . Two representations ρ1, ρ2 :
GF → GLn(O) are said to be locally potentially equivalent at T if ρ1 ◦ iv, ρ2 ◦ iv are 
potentially equivalent for all v ∈ T .

Note that the above definition is independent of the choice of the inclusion i : F ↪→
F v. The following result is an analogue of [DR23, Theorem 7] which relates potential 
equivalence with equality of m-traces for representations with coefficients in rings of large 
Krull dimension.

Theorem 3.7. Let F be a number field and let ρ1, ρ2 : GF → GLn(O) be continuous 
representations which are semisimple after extending scalars to K . Then, the following 
are equivalent:
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(a) ρ1 and ρ2 are potentially equivalent.
(b) There exists a set T of places of F with upper density one such that ρ1, ρ2 are locally 

potentially equivalent at T .
(c) There exists a positive integer m, depending only on O and n, and a set T of places 

of F with upper density one, where ρi’s are unramified, such that

Tr(ρ1(Frobm
v )) = Tr(ρ2(Frobm

v )) for all v ∈ T.

(d) The representations ρ1, ρ2 are m-trace equivalent for some positive integer m that 
depends only on O and n.

Proof. The implication from (a) to (b) is straightforward, and the implication from (d) 
to (a) follows from [DR23, Theorem 2].

Assume that (b) holds. By [Sah19, Theorem 1], the set TRam of places of F where at 
least one of the representations ρ1, ρ2 ramifies has density zero. Hence, the set T \ TRam
has upper density one. Therefore, from Lemma 3.3,

Tr(ρ1(Frobm
v )) = Tr(ρ2(Frobm

v )),

where m is a positive integer depending only on O and n. This proves that (c) is true.
Assume that (c) holds. By [Sah19, Proposition 4], there is an element h �= 0 in O such 

that λ ◦ρ1, λ ◦ρ2 are semisimple for any λ : O → Qp with λ(h) �= 0. By Lemma 3.4, there 
exists a finite extension K/L such that the kernels of all the OL-algebra homomorphisms 
from O to K form a dense subset of Spec(O). Let λ : O → K be a continuous OL-algebra 
homomorphism. Suppose λ(h) �= 0. Note that λ ◦ ρ1, λ ◦ ρ2 are unramified at T . By 
[DR23, Theorem 7], the representations λ ◦ ρ1, λ ◦ ρ2 are m-trace equivalent. Then for 
any g ∈ GF , λ(Trρ1(gm) − Trρ2(gm)) = 0, and hence (Trρ1(gm) − Trρ2(gm))h vanishes 
under any continuous OL-algebra homomorphism λ : O → K. Hence, by Lemma 3.4, 
it follows that (Trρ1(gm) − Trρ2(gm))h = 0. This proves the implication from (c) to 
(d). �

Note that the above result admits an immediate extension to a finite number of 
representations. We establish the following result that considers converging sequences of 
residually absolutely irreducible Galois representations with coefficients in a domain O, 
which admits a finite monomorphism from a power series ring over a p-adic integer ring.

Theorem 3.8. Let F be a number field and let ρi : GF → GLn(O) be a sequence of 
residually absolutely irreducible Galois representations uniformly trace converging to a 
representation ρ : GF → GLn(O). Then, the following are equivalent:

(a) For any i, j ≥ 1, the representations ρi and ρj are potentially equivalent.
(b) There exists a set T of places of F with upper density one such that, for all i, j ≥ 1, 

the representations ρi and ρj are locally potentially equivalent at T .
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(c) There exists a positive integer m, depending only on O and n, and a set T of places 
of F with upper density one, where ρi’s are unramified, such that

Tr(ρi(Frobm
v )) = Tr(ρj(Frobm

v )) for all v ∈ T and i, j ≥ 1.

(d) For all i, j ≥ 1, the representations ρi, ρj are m-trace equivalent for some m.

Proof. The implication from (a) to (b) is immediate. When (b) holds, from Theorem 2.3, 
it follows that there is a set T of places of F with upper density one where ρi’s are 
unramified, and then we obtain a positive integer m having the required properties by 
applying Lemma 3.3. This shows that (b) implies (c). Theorem 3.7 yields the remaining 
implications. �
4. Strong multiplicity one theorems

The multiplicity one theorems are fundamental in the study of automorphic represen-
tations and Galois representations. Let F be a number field and AF denote the ring of 
adeles of F . For automorphic representations of GLn(AF ), the strong multiplicity one 
theorem due to Jacquet, Piatetskii-Shapiro and Shalika [JS81b,JS81a,JPSS83] states 
that two irreducible, unitary, cuspidal automorphic representations are isomorphic if 
their local factors are isomorphic at almost all finite places. Ramakrishnan conjectured 
a refinement of this theorem for automorphic representations [Ram94a, p. 442], which 
he proved for n = 2 [Ram94b]. The analogue of the conjecture due to Ramakrishnan 
for �-adic Galois representations was established by Rajan [Raj98, Theorem 1]. We show 
that the arguments of the previous sections also yield a strong multiplicity one result for 
big Galois representations. This is obtained as a consequence of [Raj98, Theorem 1].

In the following, L, O, K are as introduced in Section 3.

Theorem 4.1. Let �1, �2 : GF → GLn(O) be two continuous representations such that 
they are semisimple after extending scalars to K . Suppose they are unramified outside 
a finite set S of finite places of F , and the upper density of

SM(�1, �2) = {v ∈ ΣF \ S | Tr(�1(Frobv)) = Tr(�2(Frobv))}

is > 1 − 1/2n2. Then �1, �2 are isomorphic after extending scalars to K .

Proof. By [Sah19, Proposition 4], there exists a nonzero element h ∈ O such that λ ◦
�1, λ ◦ �2 are semisimple for any OL-algebra homomorphism λ : O → Qp with λ(h) �= 0. 
Since the upper density of SM(�1, �2) is > 1 − 1

2n2 , for such a homomorphism λ, we obtain 
from [Raj98, Theorem 1] that λ ◦�1, λ ◦�2 are isomorphic, and hence λ ◦Tr�1, λ ◦Tr�2 are 
equal. By Lemma 3.4, the kernels of the OL-algebra homomorphisms λ : O → Qp with 
λ(h) �= 0 form a dense subset of Spec(O). It follows that �1, �2 have the same traces. By 
the Brauer–Nesbitt theorem, the result follows. �
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