
MULTIPLICITY ONE THEOREMS

VIA GALOIS REPRESENTATIONS

S. Aniruddha

Indian Institute of Science Education and Research, Bhopal

Algebra-Number Theory Seminar 2022

S. ANIRUDDHA (IISERB) MULTIPLICITY ONE THEOREMS ANTS 1 / 28



THE BIG PICTURE: MODERN NUMBER THEORY

S. ANIRUDDHA (IISERB) MULTIPLICITY ONE THEOREMS ANTS 2 / 28



MULTIPLICITY ONE THEOREMS

The philosophy of a multiplicity one theorem can be stated (vaguely) as follows:

If two global objects satisfy certain local properties at enough primes, then the objects
are same.

The name multiplicity-one comes from the theory of automorphic representations (not
discussed in the talk).

AIM FOR THE TALK

To state (and prove) such theorems in the context of elliptic curves, modular forms,
and Galois representations.
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MULTIPLICITY ONE THEOREM FOR MODULAR FORMS

A. O. L. Atkin and J. Lehner. “Hecke operators on Γ0(m)”. In: Math. Ann. 185 (1970),
pp. 134–160 prove the following result (loc. cit. Lemma 24) for newforms.

THEOREM (A MULTIPLICITY ONE FOR MODULAR FORMS)

Let f1(z) =
∑

n≥1 a(f1, n)qn, f2(z) =
∑

n≥1 a(f2, n)qn be two newforms of level N such
that

a(f1, p) = a(f2, p) for all p ̸ |N.

Then f1 = f2.
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ELLIPTIC CURVES

Let K be a field with Char(K ) ̸= 2, 3 and let K be a fixed algebraic closure of K .

DEFINITION

An elliptic curve E over K (denoted by E/K ) is a smooth projective curve in P2(K )
given by an equation

Y 2Z = X 3 + aXZ 2 + bZ 3, a, b ∈ K .

EXAMPLE

The curve E : Y 2Z = X 3 − XZ 2 is an elliptic curve over Q.

An elliptic curve E/K can also be seen as

{[x , y , 1] ∈ P2(K ) | y2 = x3 + ax + b}
⋃
{[0, 1, 0]}.

The point OE := [0, 1, 0] is called as the point at infinity.
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TORSION POINTS ON AN ELLIPTIC CURVE

There is a group law on E ,

+ : E × E → E , (P,Q) 7→ P + Q,

proved using the Riemann–Roch Theorem, with respect to which OE is the identity
of E .

Define the multiplication-by-m map

[m] : E → E , P 7→ P + · · ·+ P︸ ︷︷ ︸
m-times

.

The map [m] is a group homomorphism. Denote its kernel by E [m].
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TORSION POINTS ON AN ELLIPTIC CURVE

FIGURE: 3-torsion points on a torus. Source: Google

It is seen that if Char(K ) = 0, then

E [m] ∼= (Z/mZ)× (Z/mZ),

for all m > 1. (For K = C, E [m] is m-torsion points on a torus.)

Note that the above groups (Z-modules) are same for all elliptic curves over K .
We will see later, for K = Q, that the absolute Galois group GK acts on E [m], and
they are different as GK -modules for different elliptic curves.
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ISOGENIES

DEFINITION

Let E1,E2 be two elliptic curves over K . An isogeny between E1 and E2 is a morphism
of varieties which is also a homomorphism of groups.

If there is a non-zero isogeny E1 → E2, then we say that E1 and E2 are isogenous.

EXAMPLE (FROBENIUS ISOGENY)

Let E/Fp be an elliptic curve. The map

φp : E → E , [a, b, c]→ [ap, bp, cp],

is seen to be an isogeny.
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REDUCTION OF ELLIPTIC CURVES OVER Q

An elliptic curve E/Q (by change of variable) can be seen as the solution set of the
cubic equation

y2 = x3 + ax + b, a, b ∈ Z.

For a prime p, the reduction mod p of E is the curve Ẽp over Fp given by

y2 = x3 + ax + b,

where a is the image of a under the projection map Z→ Z/pZ = Fp.

DEFINITION

A prime p is said to be a prime of good reduction for E if p ̸ |disc(x3 + ax + b).
Equivalently, it is seen that the curve Ẽp is an elliptic curve over Fp.
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S. ANIRUDDHA (IISERB) MULTIPLICITY ONE THEOREMS ANTS 10 / 28



A MULTIPLICITY ONE THEOREM: STATEMENT

NOTATION

For an elliptic curve E/Fp, denote E(Fp) for the Fp-rational points on E , i.e.

E(Fp) = {[x , y , 1] ∈ E | x , y ∈ Fp} ∪ {OE}.

Let E ,E ′ be two elliptic curves over Q.

For a prime p of good reduction for E (resp. E ′), let Ẽp(Fp) (resp. Ẽ ′p(Fp)) denote
the Fp-rational points in the respective reductions mod p.

THEOREM (MULTIPLICITY ONE THEOREM)

If |Ẽp(Fp)| = |Ẽ ′p(Fp)| for all primes p of good reduction for E and E ′, then E and E ′

are isogenous.
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GALOIS REPRESENTATIONS

Let F be a field, F be a fixed algebraic closure of F , and let GF denote the
absolute Galois group Gal(F/F ).

GF is a compact topological group with the Krull topology. A basic open set
around σ ∈ GF is defined, for a finite extension L/F , as

B(σ, L) = {τ ∈ GF | τ = σ on L} = σGal(F/L).

DEFINITION

Let R be a topological ring. A Galois representation of GF into R is a continuous
representation GF → GLn(R), for some n ≥ 1.
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EXAMPLE: ARTIN REPRESENTATIONS

Let L/F be a finite Galois extension, i.e. Gal(L/F ) is a finite group. Consider a
representation ρ : Gal(L/F )→ GLn(C). It is continuous with the discrete topology
on Gal(L/F ).

Composing the above representation with the restriction map GF → Gal(L/F ),
sending σ → σ|L, we have a representation of GF ,

ρ̃ : GF → Gal(L/F )
ρ−→ GLn(C).

The map GF → Gal(L/F ) is continuous, implying that ρ̃ is a Galois representation.

Theorem. Every Galois representation ρ : GF → GLn(C) factors through a finite
Galois extension, i.e. there is a finite Galois extension L/F such that

ρ : GF → Gal(L/F )→ GLn(C).
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THE BRAUER–NESBITT THEOREM

By representation theory of finite groups, for a finite group G, two representations
ρ1, ρ2 : G→ GLn(C) with same traces are isomorphic. That is, if
Tr(ρ1(g)) = Tr(ρ2(g)) for all g, then ρ1 and ρ2 are isomorphic.

This is generalised in the following theorem for Galois representations.

THEOREM

Let K be a topological field with Char(K ) = 0. If ρ1, ρ2 : GF → GLn(K ) are two
semi-simple Galois representations with same trace, i.e.

Tr(ρ1(g)) = Tr(ρ2(g))

for all g ∈ GF . then ρ1 and ρ2 are isomorphic.

A semi-simple representation is a representation isomorphic to the direct sum of
irreducible representations. Note that all representations of finite groups into
GLn(C) are semisimple.

Instead of checking the traces at all g ∈ GF , is it enough to check the traces at a
smaller set? (A dense subset would do, but which one?)
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SOME PRELIMINARIES

Let us recall some notations and definitions.

Let L/Q be a Galois extension. For a prime p in Q, let Ip(L) < Gal(L/Q) be the
inertia group of L at p.

If Ip(L) = 1, then we say p is unramified in L.

For an unramified prime p in L, we have the Frobenius conjugacy class

Frobp,L ⊂ Gal(L/Q).

PROPOSITION

If all but finitely many primes are unramifed in L, then the set

{Frobp,L | p is unramified in L}

is dense in Gal(L/Q).

The proof uses Chebotarev Density Theorem.
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TRACE OF FROBENIUS

DEFINITION

A representation ρ : GQ → GLn(R) is said to be unramified at p if Ip(Qp) ⊆ ker ρ.

A Frobenius element at p in GQ is an element Frobp such that its restriction to L,

Frobp|L ∈ Frobp,L,

for all finite Galois extensions L/Q in which p is unramified.

It can be seen that any two Frobenius elements are either conjugates of each
other, or they differ my an inertia element, i.e. if Frobp, Frob′

p are Frobenius
elements at p, then

Frobp = τFrob′
pτ

−1, τ ∈ GQ,

or, Frobp = Frob′
p i, i ∈ Ip(Qp).

From the definition, and the previous remark, if ρ is unramified at p, then
Tr(ρ(Frobp)) is well-defined for a Frobenius element Frobp at p. Moreover, as det
is also invariant in a conjugacy class, det(ρ(Frobp)) is also well defined.
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A MULTIPLICITY ONE THEOREM FOR GALOIS REPRESENTATIONS

THEOREM

Let K be a topological field and let ρ1, ρ2 : GQ → GLn(K ) be two semi-simple Galois
representations which are unramified outside a finite set S of primes in Q. If

Tr(ρ1(Frobp)) = Tr(ρ2(Frobp)), for all p ̸∈ S,

then ρ1 and ρ2 are isomorphic.

Proof. From continuity of ρi ’s and the proposition mentioned in the previous slide, it
follows that Tr(ρ1(g)) = Tr(ρ2(g)) for all g ∈ GQ. Hence, the theorem follows by
Brauer–Nesbitt Theorem.
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GALOIS ACTION ON TORSION POINTS

For a prime ℓ, we "attach" a Galois representation GQ → GLn(Qℓ) to an elliptic curve
E/Q.

Let Qℓ denote the completion of Q under the ℓ-adic norm | · |ℓ.

Let Zℓ = {x ∈ Qℓ | |x |ℓ ≤ 1} be the valuation ring of Qℓ.

For m > 0, recall the set of ℓm-torsion points E [ℓm]. We can see that points in E [ℓm]
belong to P2

Q, i.e. if [x , y , 1] ∈ E [ℓm], then x , y ∈ Q. Hence, GQ acts on E [ℓm] by

σ · [x , y , 1] = [σ(x), σ(y), 1].

Moreover, we stated before that

E [ℓm] ∼= (Z/ℓmZ)× (Z/ℓmZ).

This gives a mod ℓm representation GQ → Aut(E [ℓm]) ∼= GL2(Z/ℓmZ).
This extends to an ℓ-adic representation

ρE,ℓ : GQ → Aut

(
lim←−
m

E [ℓm]

)
∼= GL2(Zℓ) ⊆ GL2(Qℓ).
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E [ℓm] ∼= (Z/ℓmZ)× (Z/ℓmZ).

This gives a mod ℓm representation GQ → Aut(E [ℓm]) ∼= GL2(Z/ℓmZ).
This extends to an ℓ-adic representation

ρE,ℓ : GQ → Aut

(
lim←−
m

E [ℓm]

)
∼= GL2(Zℓ) ⊆ GL2(Qℓ).
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ℓ-ADIC TATE MODULE

The Zℓ[GQ]-module Tℓ(E) := lim←−E [ℓm] is called as the Zℓ-Tate module of E .

It is actually easier to work with the Qℓ[GQ]-module Vℓ(E) := Tℓ(E)⊗Zℓ Qℓ, called
the ℓ-adic Tate module of E .

THEOREM

Let ρE,ℓ : GQ → GL2(Qℓ) be the ℓ-adic Galois representation attached to an elliptic
curve E/Q. Then,

ρE,ℓ is irreducible (hence, semi-simple).

ρE,ℓ is unramified at primes p ̸= ℓ of good reduction for E.

For such good primes,

Tr(ρE,ℓ(Frobp)) = ap(E) := 1 + p − |Ẽp(Fp)|; (1)

det(ρE,ℓ(Frobp)) = p. (2)
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PROOF OF THE MULTIPLICITY THEOREM

We prove a stronger theorem:

THEOREM

Let E ,E ′/Q be elliptic curves. Then, |Ẽp(Fp)| = |Ẽ ′p(Fp)| for all primes p of good
reduction for E and E ′ if and only if E and E ′ are isogenous.

Proof. If |Ẽp(Fp)| = |Ẽ ′p(Fp)| for all primes p of good reduction for E and E ′, then

ap(E) = ap(E ′).

Since there are only finitely many bad primes, by the above mentioned multiplicity one
theorem for Galois representations, we have

Vℓ(E) ∼= Vℓ(E ′),

as Qℓ[GQ]-modules. The theorem then follows from the following result.

THEOREM (FALTING’S ISOGENY THEOREM, [SIL09], THEOREM III.7.7)

Two elliptic curves over Q are isogenous iff they have isomorphic ℓ-adic Tate modules
for some prime ℓ.
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DENSITY OF PRIMES

DENSITY OF A SET OF PRIMES

Let A be a set of primes in Q. The (natural) density λ(A) of A is the limit

lim
x→∞

#{p ∈ A | p ≤ x}
#{p ≤ x} , if it exists.

EXAMPLE

If A is the set of primes in an AP a + bZ, gcd(a, b) = 1, then λ(A) = 1/ϕ(b).

By an application of the Chebotarev density theorem (cf. [Ser81, §8 ]), we can
prove that

λ({p | ap(E)}) = 0,

for elliptic curves without complex multiplication (i.e. End(E) = Z).

(Bombieri) The set of primes ending with 1 doesn’t have a natural density!
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RAJAN’S STRONG MULTIPLICITY THEOREM FOR LEVEL 1

C. S. Rajan. “On strong multiplicity one for l-adic representations”. In: Internat. Math.
Res. Notices 3 (1998), pp. 161–172 proved the following result as a consequence of
his strong multiplicity theorem for Galois representations with nice image (loc. cit.
Theorem 2).

THEOREM (RAJAN, LEVEL 1 CASE)

Let f (z) =
∑

n≥1 af (n)qn ∈ S(k1, SL2(Z)) and g(z) =
∑

n≥1 ag(n)qn ∈ S(k2, SL2(Z)) be
Hecke eigenforms of level 1. If the density of primes p such that

af (p) = ag(p)

is positive, then f = g.
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THEOREM OF MURTY–PUJAHARI FOR LEVEL 1

M. Ram Murty and Sudhir Pujahari. “Distinguishing Hecke eigenforms”. In: Proc.
Amer. Math. Soc. 145.5 (2017), pp. 1899–1904 proved the following theorem using
analytical methods.

THEOREM (A STRONG MULTIPLICITY FOR LEVEL 1)

Let f (z) =
∑

n≥1 af (n)qn ∈ S(k1, SL2(Z)) and g(z) =
∑

n≥1 ag(n)qn ∈ S(k2, SL2(Z)) be
Hecke eigenforms of level 1. If the density of primes p such that

af (p)
pk1

=
ag(p)
pk2

is positive, then f = g.

Soon after, Vijay M. Patankar and C. S. Rajan. “Distinguishing Galois representations
by their normalized traces”. In: J. Number Theory 178 (2017), pp. 118–125 proved the
above theorem as a consequence of their generalization of Rajan’s strong multiplicity
for Galois representations with nice image.

S. ANIRUDDHA (IISERB) MULTIPLICITY ONE THEOREMS ANTS 26 / 28



THEOREM OF MURTY–PUJAHARI FOR LEVEL 1

M. Ram Murty and Sudhir Pujahari. “Distinguishing Hecke eigenforms”. In: Proc.
Amer. Math. Soc. 145.5 (2017), pp. 1899–1904 proved the following theorem using
analytical methods.

THEOREM (A STRONG MULTIPLICITY FOR LEVEL 1)

Let f (z) =
∑

n≥1 af (n)qn ∈ S(k1, SL2(Z)) and g(z) =
∑

n≥1 ag(n)qn ∈ S(k2, SL2(Z)) be
Hecke eigenforms of level 1. If the density of primes p such that

af (p)
pk1

=
ag(p)
pk2

is positive, then f = g.

Soon after, Vijay M. Patankar and C. S. Rajan. “Distinguishing Galois representations
by their normalized traces”. In: J. Number Theory 178 (2017), pp. 118–125 proved the
above theorem as a consequence of their generalization of Rajan’s strong multiplicity
for Galois representations with nice image.

S. ANIRUDDHA (IISERB) MULTIPLICITY ONE THEOREMS ANTS 26 / 28



THANK YOU
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