
Chebotarev’s Density Theorem

Reinier Sorgdrager

June 28, 2020

Bachelor’s thesis Mathematics

Supervisor: dr. Arno Kret

Korteweg-de Vries Institute for Mathematics

Faculty of Sciences

University of Amsterdam



Abstract

After deriving the class number formula, we give a proof of Chebotarev’s Density The-
orem that does not invoke class field theory. We then generalize Chebotarev’s Density
Theorem to the setting of an infinite Galois extension L of a number field K that is
unramified except for a set of primes of K of Dirichlet density 0.
Before being able to do this we need to introduce some concepts from algebraic number
theory. Most notably, we give the definition of a cycle c of a given number field and
use it to define the generalized ideal class group I(c)/Pc. Then we give an asymptotic
formula for the number of integral ideals of bounded norm in a given class of I(c)/Pc.
This asymptotic formula is used to prove the class number formula, after Dirichlet series
have been introduced.
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1 Introduction

What is now known as Chebotarev’s Density Theorem was conjectured in 1896 by Georg
Frobenius [1]. Frobenius himself only succeeded in proving a weaker version and did not
live to see the proof, due to Nikolai Chebotarev, appear in the Mathematische Annalen
in 1925 [2].
The theorem can be seen as a vast generalization of Dirichlet’s Theorem on Arithmetic
Progressions, proven in 1837 by Gustav Lejeune Dirichlet. Dirichlet’s theorem states
that for coprime positive integers m and a the amount of prime numbers occuring in the
arithmetic progression

a, a+m, a+ 2m, a+ 3m, a+ 4m, a+ 5m, a+ 6m, a+ 7m, a+ 8m, a+ 9m, . . .

is infinite and that the prime numbers occuring in this progression even have a density
– which one can think of as the probability for a random prime number to occur in
the progression – equal to 1/ϕ(m). In other words, the theorem states that the prime
numbers are equidistributed over the classes in (Z /mZ)∗.
By the time Dirichlet proved this theorem, it had already been proven some decades
earlier by Gauß (and conjectured by Euler in the 1770’s [3, p. 5]) that whether an
integer a is a square in Fp depends only on p mod 4|a|. (This statement is essentially
equivalent to the law of quadratic reciprocity.) For example, for an odd prime p, −1 is a
square modulo p if and only if p = −1 mod 4. Hence, knowing Dirichlet’s theorem, one
sees that the probability that for a random prime number p there is an x ∈ Z such that
−1 = x2 mod p is equal to 1/2.
“What about higher powers?” one can wonder. For instance, can we compute the
probability that 2 is a fifth power in Fp?
Writing Pn for the amount of prime numbers less than n and Fn for the amount of prime
numbers p < n for which 2 is a fifth power in Fp, we see with the aid of a computer:

n Pn Fn Fn/Pn

10 4 4 1
100 25 20 0.8
1000 168 136 0.80952380952 . . .
10, 000 1229 983 0.79983726607 . . .
100, 000 9592 7655 0.78906088407 . . .
1000, 000 78498 62793 0.79993120843 . . .
10, 000, 000 664579 531706 0.80006440167 . . .
100, 000, 000 5761455 4608953 0.79996337731 . . .
1000, 000, 000 50847534 40678259 0.80000455872 . . .
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The data suggest that the prime numbers p for which 2 is a fifth power modulo p have
a density equal to 4/5.
This does not come as a surprise: an arbitrary prime number p is not congruent to
1 mod 5 with probability 3/4 and in that case the map F∗p → F∗p : x 7→ x5 will be
surjective, because 5 - #F∗p. With probability 1/4 on the other hand, p is congruent to

1 mod 5, in which case the group of fifth powers F∗,5p has index 5 in F∗p and one would

guess that 2 “lands” with probability 1/5 in the group F∗,5p . We would conclude that
the probability that 2 is a fifth power mod p is indeed

3/4 + 1/4 · 1/5 = 4/5.

However, this is merely a heuristic argument. To prove it, one needs Chebotarev’s
Density Theorem. This is what we do in Chapter 7. More generally, we prove for a
positive integer n and an integer a ∈ Z that the set of prime numbers p for which a is
an n’th power mod p has a density equal to

1

ϕ(n)

∑
u∈(Z /nZ)∗

1

gcd(u− 1, n)
, (1.1)

under some mild assumptions on a (it may not be an n’th power in Z for example). In
the case n is itself prime, this density equals (n − 1)/n, which indeed gives 4/5 in the
case n = 5.
In order to give this proof, one should not look at the group (Z /nZ)∗, but at the affine
group

Aff(Z /nZ) =
{(u t

0 1

)
: u ∈ (Z /nZ)∗, t ∈ Z /nZ

}
,

which is the Galois group of Q(ζn, n
√
a)/Q, where ζn is a primitive n’th root of unity.

Chebotarev’s theorem says that we obtain the density of prime numbers p for which
a is an n’th power mod p, if we divide the number of so-called Frobenius elements in
Aff(Z /nZ) that are associated to these primes p by the order nϕ(n) of the affine group.
This is how formula 1.1 is derived.

We prove Chebotarev’s Density Theorem in Chapter 5. In the preceding chapters we
develop the theory – such as that of Frobenius elements – that is required to give the
proof.
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2 Preliminaries

The reader is expected to be familiar with the groups, rings, modules, and fields. The
reader should know the statements covered in a first course in Galois theory. Moreover,
this thesis, being in algebraic number theory, contains many algebraic number theoretic
facts. All statements from algebraic number theory are either referenced or proven, but
we think the reader will benefit greatly by having taken a course in algebraic number
theory covering at least the (finiteness of) the class group, the splitting behaviour of
primes in an extension of number fields, and Dirichlet’s Unit Theorem.
Some analysis is also needed: Chapter 3 requires knowledge of multidimensional inte-
gration and Chapter 4 requires complex analysis – in both cases a first course in the
subject will suffice. Finally, in Chapter 6 the reader should be familiar with the elements
of measure theory and infinite Galois theory.

2.1 Rings of integers and their ideals

We define a number field K to be a field of finite degree over the rationals Q.
Let K be a number field. Then the ring of integers OK of K is defined as the integral
closure of Z in K.
The ring of integers OK has the nice property that every non-zero proper ideal a ⊂ OK
admits a unique factorization into non-zero prime ideals (which are maximal ideals),
that is:

a = p1 · · · pk
for certain non-zero prime ideals p1, . . . , pk and this factorization is unique up to the
order of the pi [4, ch. I, thm. 3.3].
It follows that every non-zero ideal a of OK is of finite index in the ring of integers.
In addition to the ideals ofOK , we also have so-called fractional K-ideals that are defined
as non-zero finitely generated OK-submodules of K. For every fractional K-ideal a there
exists an x ∈ OK \ {0} such that a · (x) is an ideal of OK .
The fractional K-ideals turn out to form a group under ideal multiplication, with identity
element OK . This group is called the group of invertible ideals and is denoted by I. A
subgroup of I is the set P of principal fractional K-ideals. The class group of K is
defined as the quotient ClK = I/P .
The class group is finite and its order is the class number of K [4, ch. I, thm. 6.3].

Prime ideals in extensions of number fields

Let L/K be an extension of number fields. Then we have a corresponding extension
OK ⊂ OL of the ring of integers. A non-zero prime ideal p ⊂ OK has an extension to
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OL that has a unique factorization into prime ideals:

pOL = Pe1
1 · · ·P

ek
k ,

where the Pi are distinct prime ideals and the ei are elements of Z>0. The prime ideals
Pi are said to lie above p. If for some i we have ei > 1, then p is said to ramify in L
and we call Pi ramified over K, if this is not the case p is unramified in L and the Pi

are unramified over K.
The ei are called the ramification indices of Pi over p, and can also be denoted by
e(Pi/p) = ei.
For every i we have that

(OL/Pi)/(OK/p)

is an extension of finite fields of residue class degree f(Pi/p) := [(OL/Pi) : (OK/p)].
For a non-zero prime ideal P ⊂ OL lying above the prime ideal p ⊂ OK , we define the
degree of P over K as degK(P) = f(P/p). The degree degQ(P) is called the absolute
degree of P.
We have

k∑
i=1

e(Pi/p)f(Pi/p) = [L : K],

see [4, ch. I, prop. 8.2]. The prime ideal p is said to split completely if k = [L : K], or
equivalently, if e(Pi/p) = f(Pi/p) = 1 for all i.

2.2 Lattices

A lattice L ⊂ Rn is a free abelian group that is discrete as a subspace in Euclidean
space. It is of the form

L = Z ·x1 + Z ·x2 + · · ·+ Z ·xk,

where x1, . . . , xk ∈ Rn are R-linearly independent for some k called the dimension of L.
If L is n-dimensional, the parallellotope

P =
{∑

i

λixi : λi ∈ [0, 1)
}

is called a fundamental domain of L and it contains exactly one representant of each
class in Rn /L.
In the n-dimensional case, we define the covolume of L as the volume of a fundamental
domain and denote it by Covol(L). The covolume is independent of the choice of fun-
damental domain, because linear isomorphisms Zn → Zn have determinant ±1.
The following theorem shows that for an n-dimensional lattice L ⊂ Zn one has Covol(L) =
[Zn : L].
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Theorem 2.1. Let a1, . . . , an ∈ Zn be linearly independent and let

P =
{∑

i

λiai : λi ∈ [0, 1)
}
⊂ Rn

be the parallellotope spanned by the ai. Then

Vol(P ) = #P ∩ Zn .

Proof. Let L be the lattice generated by the ai. For a ∈ P ∩ Zn write Ca = a+ [0, 1)n,
and for b ∈ L define Cba = Ca ∩ (b+ P ) (for almost all b this will be the empty set).
The union

⋃
a∈P∩Zn Ca has volume #P ∩Zn and it has the same volume as the disjoint

union ⋃
a∈P∩Zn,
b∈L

(−b+ Cba) = P.

�

Corollary 2.2. If α : Zn → Zn is a Z-linear map and det(α) 6= 0, then

|det(α)| = [Zn : Imα].

If L ⊂ Rn is an n-dimensional lattice and y ∈ Rn, then the translated lattice y + L
does not necessarily have a group structure (that happens only if y ∈ L), but one can
still think about it geometrically. This is why we define Covol(y + L) to be Covol(L).

2.3 Equivalence of norms: various definitions of the ideal
norm

Let K be a number field. Then one can define the norm of a non-zero ideal a of OK in
various ways. One such definition is as follows.

Definition (Norm of an OK-ideal). Let a be a non-zero ideal of OK . Then we define
its norm Na as

Na = #OK/a.

The norm turns out to be related to the field norm NK/Q on K, that sends an element
α ∈ K to NL/Q(α) =

∏
σ σ(α), where the product ranges over the embeddings σ :

K → C. Note that NK/Q(α) = det(− · α), where multiplication by α is seen as an
endomorphism of the Q-vector space K.

Lemma 2.3. The norm is multiplicative, that is, for two non-zero OK-ideals a and b
one has N(ab) = Na ·Nb.
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Proof. By the Chinese Remainder Theorem it suffices to prove N(pn) = (Np)n when p
is a non-zero prime ideal. We prove this by induction on n. When n = 1 it is clearly
true. For n > 1 we have a surjective ring morhpism

OK/pn � OK/pn−1

with kernel pn−1/pn. By the induction hypothesis we are done if we are able to show
that #pn−1/pn = #OK/p. To see this, note that pn−1/pn is a non-trivial vector space
over OK/p. Its dimension cannot be greater than 1, for then we would have a proper
linear subspace of pn−1/pn, which would, when contracted to OK , give rise to an ideal
a of OK satisfying

pn ( a ( pn−1.

In that case we would have
p ( ap1−n ( OK ,

contradicting the maximality of p. Thus pn−1/pn has dimension 1 over OK/p. �

Theorem 2.4. The norm Na of a non-zero ideal a ⊂ OK is equal to the unique n(a) :=
a > 0 for which aZ equals the ideal generated by the image of a under NK/Q.

Proof. One can verify that n is multiplicative. So by multiplicativity of both N and n,
it suffices to verify Np = n(p) for all non-zero prime ideals p of K.
Let h be the class number of K and let p be a non-zero prime of K. Then ph = αOK is
principal. We have

n(p)h = n(αOK) = |NK/Q(α)| = |det(− · α)| = #OK/αOK = Nph,

where the penultimate equality follows by Corollary 2.2. Thus n(p) = Np. �

2.4 Frobenius elements

Frobenius elements play a central role in this thesis. We will state and prove a few
elementary results that will allow us to give their definition (cf. [5, p. 85–86]).
Throughout this section let L/K be a Galois extension of number fields with group G.

Theorem 2.5. Let p ⊂ OK be a non-zero prime ideal and let Sp be the set of primes
P ⊂ OL above p. Then the G-action on Sp, given by σP := σ(P) for σ ∈ G, is transitive.

Proof. Let P be in Sp. By the Chinese Remainder Theorem there exists an x ∈ P that
is not an element of any P′ ∈ Sp different from P. Hence, for σ ∈ G, the only prime in
Sp containing σ(x) is σP. Because NL/K(x) =

∏
σ σ(x) ∈ p ⊂

⋂
P′∈Sp

P′ we conclude

that any P′ ∈ Sp must occur as a σP. �

Because G acts transitively on Sp we see that the ramification indices e(P/p) and the
residue class degrees f(P/p) are independent of P, we will hence denote them by ep and
fp respectively. In addition, write gp = Sp.
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Corollary 2.6. For a non-zero prime p of OK one has epfpgp = [L : K].

Proof. On the one hand we have

N(pOL) = #OL/pOL = (#OK/p)[L:K],

while on the other hand

N(pOL) =
∏
P∈Sp

NPep =
∏
P∈Sp

(#OK/p)epfp = (#OK/p)epfpgp .

�

For a prime P ∈ Sp, let GP ⊂ G be the stabilizer of P. The group GP is called the
decomposition group of P.
We have #GP = g−1

p #G = epfp. Moreover GP acts naturally on OL/P, inducing a
morphism of groups GP → Gal

(
(OL/P)/(OK/p)

)
.

Lemma 2.7. The map GP → Gal
(
(OL/P)/(OK/p)

)
is surjective.

Proof. Let x ∈ OL/P be a primitive element for (OL/P)/(OK/p) with minimal polyno-
mial f ∈ (OK/p)[X]. By the Chinese Remainder Theorem there is a lift ξ of x that is
an element of P′ for any P′ ∈ Sp \ {P}.
Let g =

∏
σ∈G(X − σ(ξ)) ∈ K[X]. Its reduction modulo p looks like g = X#G−gph ∈

(OK/p)[X], for some polynomial h ∈ (OK/p)[X]. We see that the minimal polynomial
f divides h, and hence every conjugate of x over OK/p is obtained by reducing σ(ξ)
modulo P for some σ ∈ GP. �

In the case that p does not ramify in L, one has ep = 1, and thus #GP = fp, which
means the map is not merely a surjection, but even an isomorphism! This gives rise to
the definition of the Frobenius element of an unramified prime P ⊂ OL.

Definition (The Frobenius element of a prime P). Suppose P ⊂ OL is a non-zero
prime ideal, unramified over K, lying above the prime p ⊂ OK . Then we define the
Frobenius element (P, L/K) ∈ G of P as the unique element of GP that is sent to
(x 7→ xNp) ∈ Gal

(
(OL/P)/(OK/p)

)
by the map of Lemma 2.7.

Finally, note that for any non-zero prime P ⊂ OL and any σ ∈ G one has GσP =
σGPσ

−1. Moreover, in the case P ⊂ OL is unramified over K (and lies above p ⊂ OK)
we have

(σP, L/K) = σ(P, L/K)σ−1,

which follows from the fact that for any x ∈ OL

(σ(P, L/K)σ−1)
(
x+ σP

)
= σ

((
σ−1(x)

)Np
+ P

)
= xNp + σP.

This means the conjugacy class of a Frobenius element of a prime P ⊂ OL depends only
on P ∩OK . In the case that G is abelian this conjugacy class is a singleton and we can
simply speak of the Frobenius element of the primes above P ∩ OK .
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3 Counting ideals

Throughout this chapter, let K be a number field and n = [K : Q].

3.1 Some more preliminaries

In this chapter, we are interested in counting the ideals of OK in a given class of a so-
called “generalized ideal class group” – whose definition will be given in the next section.
The counting of ideals is an essential part in calculating the densities of prime ideals
which we will do in Chapter 5 where we prove Chebotarev’s Density Theorem.
In order to count these ideals we will view them as part of Euclidean space, or more
generally, we will view K as part of Euclidean space. There is one obvious way in which
we can do this: using the embeddings of K into the complex numbers.
If σ : K ↪→ C is an embedding, then σ induces an archimedean absolute value on K
by composing the absolute value of C with σ. Note that σ and its complex conjugate
σ induce the same absolute value. Conversely, one can verify that if two embeddings
σ, τ : K ↪→ C induce the same absolute value, then either σ = τ or σ = τ .
Hence, if K has r1 real embeddings (embeddings into R) and 2r2 complex embeddings
(embeddings into C that do not map into R), then the number of archimedean absolute
values on K is r1 + r2. We will call an archimedean absolute value real if it is induced
by a real embedding and complex otherwise.
To each archimedean absolute value v on K we associate the Euclidean space

Kv :=

{
R if v is real,

R2 if v is complex.

If v is induced by σ : K ↪→ C, then in the real case we simply get the map σ : K ↪→ Kv

and in the complex case we identify C with R2 (by identifying x + iy with (x, y)) and
also get a map σ : K ↪→ Kv – note that we have to choose an embedding to obtain a
map K ↪→ Kv in the case v is complex.
For each archimedean value v we choose an embedding σv : K ↪→ Kv that induces v.
This gives us a map

ΦK : K ↪→
∏
v

Kv = Rn : x 7→ (σv(x))v,

where v runs over all archimedean absolute values of K. It is this map of K into Eu-
clidean n-space that we will use in the counting of ideals. When using this map we will
always assume the σv have already been chosen.
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In defining the archimedean absolute value on K as above, we made sure to stress
that those absolute values are the archimedean absolute values of K: for there are also
non-archimedean absolute values on K. Namely, for every non-zero prime ideal p ⊂ OK
there is a p-adic absolute value on K [6, ch. 2]. We will not develop or use the theory
of p-adic absolute values here, but merely mention them as a motivation for why prime
ideals p and absolute values are often treated similarly (in those cases they are both
referred to by “places of K”). We will see an instance of such similar treatment of
absolute values and prime ideals in the definition of a “cycle” in the following section.
For now, we would briefly like to mention the concept of localization at a prime ideal p.
Given a non-zero prime ideal p ⊂ OK we define the localization of OK at p as

(OK)p = {a/b ∈ K : a ∈ OK , b ∈ OK \ p}.

The localization (OK)p is a local ring with maximal ideal mp = p(OK)p. We leave it to
the reader to check that the natural map OK/p→ (OK)p/mp is an isomorphism.
Finally, we note that mp is a principal ideal [6, ch. I, prop. 15]. If πp ∈ (OK)p generates
mp we call πp a uniformizer of p.

3.2 Generalized ideal class groups

Now we will introduce a general kind of ideal class group that can capture information
about the real embeddings of a field and about ideals coprime to some given ideal.
We define a cycle c of K as a formal product

c =
∏
v

vm(v),

where the v run over the archimedean absolute values of K and the non-zero prime
ideals of OK , and the m(v) are non-negative integers, only finitely many of which are
non-zero. (In the spirit of treating absolute values and prime ideals similarly, the letter
v also denotes prime ideals here.) The m(v) can be thought of as multiplicities and just
as with ideals we write v | c if m(v) > 0.
If v is an archimedean absolute value, we write v | ∞, and otherwise we write v - ∞.
For each cycle c we define

c0 =
∏
p-∞

pm(p).

This is called the finite part of c, and it can simply be viewed as an ideal of OK .

Let us denote the group of fractional K-ideals coprime to c (by which we mean coprime
to c0) by I(c). Note that I((1)) = I, the group of fractional ideals. Just as we usually
take the quotient I/P to get the ideal class group, we will take a quotient of I(c) to
obtain a generalized ideal class group. In order to do this, let us construct a suitable
subgroup.
For an element α of K∗ we write α = 1 mod∗ c if α satisfies the following two conditions:
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(i) If p | c is a prime ideal, then α lies in the localization of the ring of integers at p
and

α = 1 mod m
m(p)
p ,

where mp denotes the maximal ideal of (OK)p.

(ii) If v | c is a real absolute value induced by the embedding σ : K ↪→ R, then σ(α) > 0.

Denote by Kc ⊂ K∗ the subgroup of elements satisfying these conditions. (The idea
behind our notation is: given a set X we will write Xc to denote the subset of X
satisfying conditions (i) and (ii), while X(c) will denote the set of all elements of X
coprime to c.) So we write Pc for the group of principal fractional ideals (α) satisfying
α ∈ Kc. We then define the generalized ideal class group of c as I(c)/Pc. If c = (1) it
equals the class group.
Like the class group, the generalized ideal class group I(c)/Pc turns out to be finite as
well. The proof presented below can be found in [6, p. 124–126].

Theorem 3.1. Let K be a number field and c =
∏
v v

m(v) a cycle of K. Let K(c)
denote the subset of K∗ of elements coprime to c. Then the group K(c)/Kc is finite,
and, moreover, the generalized ideal class group I(c)/Pc is finite.

Proof. Note that every class in I/P has a representative in I(c): if a ⊂ OK is an ideal
in some class A ∈ I/P we can solve the congruences

α = π
ordp a
p mod p1+ordp a for p | c0

by the Chinese Remainder Theorem – here the πp ∈ OK are uniformizers of p. Then the
ideal a · (α−1) is coprime to c and an element of A.
This shows the map I(c)→ I/P is surjective, giving an isomorphism

I(c)/P (c) ∼= I/P, (3.1)

where P (c) = I(c) ∩ P denotes the group of non-zero principal ideals coprime to c.
From the definitions we have Pc ⊂ P (c), giving a surjective homomorphism

I(c)/Pc � I(c)/P (c). (3.2)

We will now analyze its kernel P (c)/Pc.
We have a surjective group homomorphism from the elements of K∗ coprime to c to
P (c), namely K(c) → P (c) : α 7→ (α). The inverse image of the group Pc is precisely
UKc, where U = O∗K . This induces an isomorphism

K(c)/UKc
∼= P (c)/Pc. (3.3)

If v is a real absolute value induced by the embedding σ : K ↪→ R, let us write K+
v =

R>0 ⊂ Kv. Then K∗v/K
+
v
∼= {±1} (as we can view the Kv as fields). At last, let us

consider the map

K(c)→
∏
p|c0

(
(OK)p/m

m(p)
p

)∗
×
∏
v|c
v real

K∗v/K
+
v ,
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which maps each element of K(c) to its residue class in the corresponding component
(where the images in the K∗v/K

+
v are determined by the natural maps K → Kv that we

discussed in the previous section). The kernel of this map is precisely Kc. Because the
codomain is finite, it follows that K(c)/Kc is finite. Hence K(c)/UKc is finite as well.
By 3.3 it then follows that P (c)/Pc is finite. Because P (c)/Pc is the kernel of the map
in 3.2, it follows by 3.1 and the fact that the ideal class group is finite that I(c)/Pc is
finite as well. �

If c is a cycle of K and A a class in I(c)/Pc, then A contains an OK-ideal: suppose the
fractional K-ideal a is contained in A, then for some x ∈ OK \{0} we have a · (x) ⊂ OK .
Note that we can choose x coprime to c, so if the class of (x) in I(c)/Pc has order k, we
see that A contains the OK-ideal a · (xk).

3.3 Dirichlet’s Unit Theorem and its generalization

Recall the map ΦK : K →
∏
vKv. Since, in constructing this map, we had to choose an

embedding σv for every complex embedding v, in a way, we threw out some information
about the other embedding. To make up for this, we will write for an archimedean
absolute value v and an x ∈ Kv

‖x‖ =

{
|x| if v is real,

|x|2 if v is complex.

Note that for an element α ∈ K it follows that |NK/Q(α)| =
∏
v ‖σv(α)‖.

Now recall Dirichlet’s Unit Theorem.

Theorem 3.2. Let K be a number field that has r1 real absolute values and r2 complex
absolute values. Then the map

L : O∗K →
∏
v

R = Rr1+r2 : x 7→ (log ‖σv(x)‖)v,

where v ranges over all archimedean absolute values, maps the unit group O∗K of K to
an r1 + r2 − 1-dimensional lattice that lies in the hyperplane

H = {(x1, . . . , xr1+r2) ∈ Rr1+r2 :
∑
i

xi = 0}.

The kernel kerL is the set of roots of unity of K.

Proof. See [4, ch. I, §7], [6, p. 104–108], or [5, thm. 5.14]. �

The map L of Dirichlet’s Unit Theorem is often called the log map.
Just as with the ideal class group, the concept of the unit group U := O∗K can be
generalized using cycles. Let c be a cycle of K, then this “generalized unit group” is
defined as Uc = U ∩Kc. We see

U/Uc = U/(U ∩Kc) ∼= UKc/Kc,
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hence the index [U : Uc] ≤ [K(c) : Kc] is finite.
From this simple observation about the index of Uc in U , we obtain the following gener-
alization of Dirichlet’s Unit Theorem.

Theorem 3.3. Let K be a number field that has r1 real absolute values and r2 complex
absolute values and let c be a cycle of K. Then the map

Lc : Uc →
∏
v

R = Rr1+r2 : x 7→ (log ‖σv(x)‖)v,

where v ranges over all archimedean absolute values, maps the generalized unit group Uc

to an r1 + r2 − 1-dimensional lattice that lies in the hyperplane

H = {(x1, . . . , xr1+r2) ∈ Rr1+r2 :
∑
i

xi = 0}.

The kernel kerLc is the set of roots of unity that lie in Kc.

It follows that Uc modulo its roots of unity is a free abelian group of rank r := r1+r2−1,
where r1 and r2 are defined as in the theorem above. Let u1, . . . , ur ∈ O∗K be units such
that their images through Lc generate the r-dimensional lattice. Then u1, . . . , un are
called fundamental units for Uc.
Let v1, . . . , vr be r distinct archimedean values of all r + 1 archimedean absolute values
of K. Then the regulator of Uc, is defined as

Rc =

∣∣∣∣∣∣∣det

log ‖σv1(u1)‖ · · · log ‖σv1(ur)‖
...

. . .
...

log ‖σvr(u1)‖ · · · log ‖σvr(ur)‖


∣∣∣∣∣∣∣ .

This definition is independent of the choice of absolute values v1, . . . , vr, since Lc maps
into the hyperplane H = {(x1, . . . , xr1+r2) ∈ Rr1+r2 :

∑
i xi = 0}. The determinant

is non-zero because of the linear independence of the Lc(ui). Finally, it follows from
Corollary 2.2 that Rc is independent of the choice of the ui.
In the case c = (1), the regulator Rc is called the regulator of K and is denoted by RK ,
or simply by R.

3.4 Discriminants and covolumes of ideals

Let σ1, . . . , σn be the embeddings of K into C (both the real and complex embeddings).
For x1, . . . , xn ∈ K we define the discriminant of x1, . . . , xn as

∆(x1, . . . , xn) =
(

det(σi(xj))
n
i,j=1

)2
.

Suppose x1, . . . , xn are linearly independent over Q, then it follows from the Artin-
Dedekind Lemma about the linear independence of characters [7, thm. 12] that ∆(x1, . . . , xn) 6=
0.
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If y1, . . . , yn ∈ Q are linear independent as well, and T is the base change mapping xi to
yi, then it follows that

∆(y1, . . . , yn) =
(

detT
)2

∆(x1, . . . , xn). (3.4)

When x1, . . . , xn ∈ OK is a Z-basis for OK , we set ∆K = ∆(x1, . . . , xn), which is
independent of the choice of basis by 3.4 and Corollary 2.2. The discriminant ∆K is
called the discriminant of K.

Lemma 3.4. Let K be a number of field of degree n over Q and let a be a non-zero ideal
of its ring of integers. The map ΦK : K → Rn maps a to an n-dimensional lattice that
has covolume

Covol(ΦK(a)) = 2−r2Na
√
|∆K |,

where r2 is the number of complex absolute values of K.

Proof. Let α1, . . . , αn be a Z-basis for a. Let σ1, . . . , σr1 be the real embeddings of K
and let τ1, . . . , τr2 be the complex embeddings that are used to define ΦK .
Write τk(α`) = xk`+iyk`. Then the discriminant of a equals the square of the determinant
of 

σ1(α1) · · · σ1(αn)
...

...
x11 + iy11 · · · x1n + iy1n

...
...

x11 − iy11 · · · x1n − iy1n
...

...


.

Adding the row corresponding to a τk to the row belonging to τk, and subsequently sub-
stracting 1

2 times the new row from the row belonging to τk shows that this determinant
equals (up to sign) that of

2r2



σ1(α1) · · · σ1(αn)
...

...
y11 · · · y1n
...

...
x11 · · · x1n

...
...


.

The absolute value of the determinant of the latter matrix (without the scalar in front)
is the volume of the parallellotope spanned by the ΦK(αi). The determinant is non-zero,
therefore a is indeed mapped to an n-dimensional lattice.
By 3.4 and 2.2 it follows that

Covol(ΦK(a)) = 2−r2
√
|∆(α1, . . . , αn)| = 2−r2Na

√
|∆K |.

�
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3.5 Counting ideals in ideal classes

If c is a cycle of K and A a class in I(c)/Pc, then we would like to know the number
Z(t;A), which is the number of OK-ideals in A of norm ≤ t. It turns out Z(t;A) =
ρt+O(t1−1/n) as t→∞, for some ρ ∈ R.
It is of utmost importance for Chebotarev’s Density Theorem that ρ is independent of
the class A. However, the exact value of ρ is not important in order to prove the density
theorem. Nevertheless, we are happy to go the extra mile and compute the exact value
of ρ, because it will enable us to derive the class number formula in Theorem 4.5.
The following theorem gives the value of ρ and is due to Hecke [8, thm. 121]. We will
take a slightly different approach (that of Lang [6, ch. VI, §3]) than Hecke’s, because it
enables us to obtain the O-term in Z(t;A) = ρt + O(t1−1/n) and it lets us deal with
generalized ideal class groups rather than just the class group.

Theorem 3.5. Let K be a field of degree n over Q, let c be a cycle of K, and let A be
a class of ideals in I(c)/Pc. If Z(t;A) denotes the number of (integral) ideals in A of
norm ≤ t, then

Z(t;A) =
2r1+r2πr2Rc

wc2s(c)Nc0
√
|∆K |

t+O(t1−1/n),

where r1 is the number of real absolute values and r2 the number complex absolute values
of K, s(c) is the number of real absolute values v | c, and wc is the number of roots of
unity in Kc.

Proof. The counting of ideals can be reduced to the counting of elements of OK in some
domain D ⊂ Rn. We should construct this D with care, in order to avoid counting ideals
multiple times. This is what we will do first. Afterwards it should become clear why
this was the right construction.
Let

Jc =
{
ξ ∈ (R∗)r1 × (C∗)r2 : ξv > 0 for real v|c

}
⊂
∏
v

Kv,

where we identify
∏
vKv with Rn. Using ΦK we will view Kc as a subset of Jc.

Notice that the absolute value of the usual norm on K can be extended to
∏
vKv: send

ξ to Nξ :=
∏
v |ξv|nv =

∏
v ‖ξv‖, where nv is 1 when v is real and 2 otherwise. (The

notation Nξ is consistent with earlier notation, for if ξ ∈ OK \ {0} then the ideal norm
N(ξ) equals

∏
v ‖ξv‖.) We define the homogenized log map

h : Jc → Rr1+r2 : ξ 7→
(

log
‖ξv‖

Nξnv/n

)
v
.

The image of h lies in the hyperplane H ⊂ Rr1+r2 of all z with
∑r1+r2

i=1 zi = 0.
Write r = r1 + r2 − 1 and let V ⊂ K∗ be the free subgroup generated by fundamental
units η1, . . . , ηr of Uc (seen as subset of Jc). Writing yi = h(ηi), we see the yi’s generate an
r-dimensional lattice in H by Theorem 3.3, since the homogenized log map h restricted
to Uc is simply the log map. Define F to be the fundamental domain of this lattice
consisting of the

c1y1 + c2y2 + · · ·+ cryr, (3.5)
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with 0 ≤ ci < 1. Finally define D = h−1(F ) ⊂ Jc.

Now we are ready to think about ideals.
Let b ⊂ OK be an ideal in A−1. For any ideal a ⊂ OK in A we have ab = (ξ) for some
ξ = 1 mod∗ c that is 0 mod b. So a 7→ ab is a bijection between A and the classes
modulo Uc of elements ξ ⊂ OK ∩Kc satisfying ξ = 1 mod∗ c and ξ = 0 mod b.
Because F is a fundamental domain for the lattice h(V ), there is precisely one element
of the h(V )-orbit of h(ξ) contained in F . Hence, adjusting for the roots of unity in Uc,
for each a ∈ A our domain D contains exactly wc such ξ representing ab.
Moreover, for arbitrary ξ in D we have the implication

(ξ = 1 mod c0 ∧ ξ = 0 mod b) =⇒ (ξ = 1 mod∗ c ∧ ξ = 0 mod b),

because D is a subset of Jc. So it is enough to consider elements in D satisfying the first
condition.
Elements ξ ∈ D satisfying ξ = 1 mod c0 and ξ = 0 mod b form a translated lattice
in Rn: every such element can be translated by an element of bc0, and by the Chinese
Remainder Theorem every such element is contained in ξ′+bc0, for any fixed ξ′ satisfying
ξ′ = 1 mod c0 and ξ′ = 0 mod b. Thus this translated lattice, which we will call L, is
simply the lattice of bc0 translated by some ξ satisfying the first condition. In particular,
it has the same covolume.
Hence we find wcZ(t;A) is the same as the number of ξ ∈ L ∩D satisfying Nξ ≤ Nb · t
(because Na ≤ t ⇐⇒ Nab ≤ Nb · t).
Notice that tD = D for t > 0: this follows from the fact that h(tx) = h(x) for all x ∈ Jc,
since ‖txv‖

(Ntx)nv/n
= ‖xv‖

Nxnv/n
. So if we define

D1 = {x ∈ D : Nx ≤ 1},

then the elements x ∈ D of norm less than or equal to Nb · t are those contained in
(Nb · t)1/nD1.
This means wcZ(t;A) equals #((Nb · t)1/nD1) ∩ L, or, equivalently,

wcZ(t;A) = #D1 ∩ Lt,

where we define Lt to be 1
(Nb·t)1/nL.

Let Pt be a fundamental domain of the lattice 1
(Nb·t)1/n bc0 and assign to every ξ ∈

D1 ∩ Lt the parallellotope ξ + Pt. This way we cover D1 with parallelotopes of volume
Covol(Lt) = Vol(Pt) (which tends to 0 as t→∞). By definition of the volume, we then
find

lim
t→∞

wcZ(t;A) Covol(Lt) = Vol(D1). (3.6)

Note that the volume of D1 is finite, as D1 is bounded: if x ∈ D1, we have for every
coordinate |xv| ≤ Nx1/neBr ≤ eBr, where B is a bound depending on the y1, . . . , yr.
By Lemma 3.4 we have Covol(Lt) = (Nb · t)−1 Covol(L) = (2r2t)−1Nc0

√
|∆K |. We

therefore see

Z(t;A) =
2r2 Vol(D1)

wcNc0
√
|∆K |

t+ some error term. (3.7)
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Although the error term is clearly o(t), we still need to prove it is actually O(t1−1/n). If
we also show that Vol(D1) = 2r1−s(c)πr2Rc, then we are done.

We will compute the volume first. Let v1, . . . , vr1+r2 be the archimedean absolute
values on K, with the v1, . . . , vr1 being real, and consider D1 ⊂ Rn in polar coordinates
(ρi, θi) for i ∈ {1, . . . , r1 + r2}, with ρi ≥ 0 for all i,

θi =

{
1 if vi | c and i ≤ r1,

±1 otherwise if i ≤ r1,
and, for i > r1, θi ∈ [0, 2π].

Recalling 3.5, we see the polar coordinates of D1 are those satisying

0 <

r1+r2∏
i=1

ρni
i ≤ 1 and log ρj −

1

n
log

r1+r2∏
i=1

ρni
i =

r∑
i=1

ci log |σvj (ηi)|, for some ci ∈ [0, 1).

These conditions do not depend on the θi. So consider only the space P ⊂ Rr1+r2

of (ρ1, . . . ρr1+r2) satisfying these conditions. The Jacobian determinant of (ρ, θ) 7→
ρ(cos θ, sin θ) equals ρ. Thus

Vol(D1) = (2π)r22r1−s(c)
∫
P
ρr1+1 · · · ρr1+r2dρ1 · · · dρr1+r2 .

In order to compute this integral, we will do a change of variables. Consider in the
variables (u, c1, . . . , cr) the cube S = (0, 1]× [0, 1)r. Then we have a bijection f : S → P
given by

ρj = fj(u, c1, . . . , cr) = u1/n exp
( r∑
i=1

ci log |σvj (ηi)|
)
.

In the other direction we have u =
∏r1+r2
i=1 ρni

i , and the fact that the regulator Rc =∣∣∣det(log ‖σj(ηi)‖)ri,j=1

∣∣∣ is non-zero ensures there is a unique solution for the ci.

Let’s compute the Jacobian determinant of f . First note ∂ρj/∂u = 1
nρj/u and ∂ρj/∂ci =

ρj log |σvj (ηi)|. So

det(Jac(f)) =
2−r2

nρr1+1 · ρr1+r2

det

1 log |σv1(η1)| · · · log |σv1(ηr)|
...

...
...

1 log |σvr1+r2
(η1)| · · · log |σvr1+r2

(ηr)|

 .

Adding the first r rows to the last after multiplying the j’th row by nj shows us

|det(Jac(f))| = 2−r2Rc

ρr1+1 · · · ρr1+r2

. Hence

Vol(D1) = (2π)r22r1−s(c)
∫
S

2−r2Rc = 2r1−s(c)πr2Rc,

as was to be shown.
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Finally, let us consider the error term in 3.7.
First note that f can be continuously extended to a map with domain [0, 1]r1+r2 onto
the closure P of P , and by considering f̃ = f(un, c1, . . . , cr) we obtain a smooth map
f̃ : [0, 1]r1+r2 → P .
For each real absolute value vi of K that does not divide c, the variable θi can be either
1 or −1. This means D1 has 2r1−s(c) connected components. Combining the maps f̃
and θ 7→ (cos 2πθ, sin 2πθ) we obtain smooth parametrizations of the components of D1,
denoted by f̃1, . . . , f̃2r1−s(c) : [0, 1]r1+r2 × [0, 1]r2 = [0, 1]n → D1, one for each component
of D1.
For the boundaries we have ⋃

j

f̃j
(
∂ ([0, 1]n)

)
⊃ ∂D1,

which means that the boundary ∂D1 can be covered by the images of M = 2n · 2r1−s(c)
different smooth maps gj : [0, 1]n−1 → ∂D1.
When estimating the volume of D1 as in 3.6 we can only under- or overestimate near the
boundary of D1. For all t we can bound this error absolutely by Covol(Lt) · It, where It
is the number of parallellotopes intersecting the boundary:

It = #
{
ξ ∈ Lt : (ξ + Pt) ∩ ∂D1 6= ∅

}
.

So the error term in 3.7 can be bounded by It. We claim It = O(t1−1/n) as t→∞. To
see this, cut up each side of the unit n−1 cube [0, 1]n−1 into dt1/ne parts of equal length
to obtain dt1/nen−1 small cubes, that we collect in the set of small cubes Ct.
For a given t, the images of all small cubes in Ct through all maps gj cover the boundary
∂D1. The maps gj are smooth and hence Lipschitz, so the diameter of a set gj(k), k ∈ Ct
being a small cube, can be bounded by ct−1/n for some constant c independent of k, j,
or t.
Finally, there is a constant S > 0, only depending on the translated lattice L1 =

1
(Nb)1/n

L, such that the maximal number of parallellotopes ξ + P1 (for ξ ∈ L1) that

a set with diameter at most c can intersect is bounded by S. Thus the number of par-
allellotopes ξ + Pt (for ξ ∈ Lt) that an image of a small cube gj(k) can intersect is also
bounded by S. Hence we see that we can bound It by

M · S · dt1/nen−1 = O(t1−1/n) as t→∞,

proving our last claim.
�
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4 Zeta functions of number fields

This chapter will essentially be the first part of chapter VIII (excluding §4) of Lang’s
Algebraic Number Theory [6]. All theorems found here can be found there, with more
or less the same proofs.

4.1 Dirichlet series

Dirichlet series play a central role in Chebotarev’s Density Theorem and, indeed, in
number theory, as the zeta functions and L-series can be expressed as Dirichlet series.
In order to study the latter functions, we will prove some elementary results about
Dirichlet series. But first of all: what are they?

Definition (Dirichlet series). A Dirichlet series is a series of the form

∞∑
n=1

an/n
s,

where the an are complex numbers and s is a complex variable.

If {an} and {bn} are sequences of complex numbers and An denotes the partial sum
a1 + · · · + an for n ∈ N (and A0 = 0), then recall or check the following identity of
summation by parts:

n∑
i=m

aibi = Anbn −Am−1bm +
n−1∑
i=m

Ai(bi − bi+1) for m ≤ n.

We are interested in when and where a Dirichlet series converges. The summation by
parts identity will prove useful.

Lemma 4.1. If the Dirichlet series
∑
an/n

s converges for s = s0, then it converges
for any s with Re(s) > Re(s0), uniformly on any compact subset of this region. In
particular, it then defines an analytic function in that region.

Proof. We will sum
∑ an

ns0
1

ns−s0
by parts. Writing Pn(s0) =

∑n
k=1

ak
ks0

this yields for

n > m the following:

n∑
k=m+1

ak
ks0

1

ks−s0
=
Pn(s0)

ns−s0
− Pm(s0)

(m+ 1)s−s0
+

n−1∑
k=m+1

Pk(s0)
( 1

ks−s0
− 1

(k + 1)s−s0

)
.
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If Re(s) > Re(s0) we have∣∣∣ 1

ks−s0
− 1

(k + 1)s−s0

∣∣∣ =
∣∣∣(s− s0)

∫ k+1

k

1

xs−s0+1
dx
∣∣∣ ≤ ∣∣∣(s− s0)

k

∣∣∣.
So if δ > 0 and Re(s) ≥ δ+Re(s0), then it follows that

∑n
k=m+1 ak/k

s =
∑n

k=m+1
ak
ks0

1
ks−s0

will get uniformly arbitrarily small, whenever |s− s0| is bounded.
Finally, this means the Dirichlet series defines an analytic series on Re(s) > Re(s0): the
series is a limit of analytic functions that converges uniformly on compact sets, hence it
is itself analytic by a theorem of Weierstraß [9, thm. III.1.3]. �

The previous lemma tells us the following definition – similar to the radius of conver-
gence of power series – makes sense.

Definition (Abscissa of convergence). Let
∑
an/n

s be a Dirichlet series. Then the
smallest real number (or ±∞) σ0 such that the series converges for all s ∈ C with
Re(s) > σ0 is called the abscissa of convergence.

Now we will obtain a way to find an upper bound of the abscissa of convergence.

Lemma 4.2. Assume here exists a C ∈ R and a σ1 > 0 such that

|An| = |a1 + · · ·+ an| ≤ Cnσ1

for all partial sums An. Then the abscissa of convergence of
∑
an/n

s is less than or
equal to σ1.

Proof. Again writing Pn(s) =
∑n

k=1

ak
ks

, we find for n > m by summation by parts

Pn(s)− Pm(s) =
An
ns
− Am

(m+ 1)s
+

n−1∑
k=m+1

Ak

( 1

ks
− 1

(k + 1)s

)

=
An
ns
− Am

(m+ 1)s
+

n−1∑
k=m+1

Aks

∫ k+1

k

1

xs+1
dx.

Let δ > 0 and suppose Re(s) ≥ σ1 + δ. Then for all k we have

∣∣Ak ∫ k+1

k

1

xs+1

∣∣ ≤ C ∫ k+1

k

1

xRe(s)−σ1+1
dx,

hence

|Pn(s)− Pm(s)| ≤ 2C

(m+ 1)δ
+ |s|C

∫ n

m+1

1

x1+δ
dx,

which tends to zero for m and n large. �
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Now consider

ζ(s) =
∑ 1

ns
,

which is analytic on {s ∈ C : Re(s) > 1} by the previous lemma. This function is called
the Riemann zeta function and has an analytic continuation to the right half plane
{s ∈ C : Re(s) > 0}, except for a single pole.

Lemma 4.3. The Riemann zeta function has an analytic continuation to {s ∈ C : Re(s) > 0},
except for a simple pole at s = 1 with residue 1.

Proof. To find the analytic continuation let us consider “the alternating zeta function”

ζ2(s) = 1− 1

2s
+

1

3s
− 1

4s
+ · · · .

By the previous lemma ζ2(s) is analytic on {s ∈ C : Re(s) > 0}, since the partial sums
of its coefficients alternate between 1 and 0 and are thus bounded. On the other hand,
we have for s with Re s > 1

2

2s
ζ(s) + ζ2(s) = ζ(s),

and hence

ζ(s) = (1− 2

2s
)−1ζ2(s),

which gives us an analytic continuation to Re(s) > 0, except possibly for s ∈ 1+ 2π
log 2 Z i.

To analyze these possible poles, consider the more general alternating zeta functions for
r ∈ N:

ζr(s) = 1 +
1

2s
+ · · ·+ 1

(r − 1)s
− r − 1

rs
+

1

(r + 1)s
+ · · · .

For the same reason as for r = 2 they are analytic on Re(s) > 0. And, like before,
we get an identity r

rs ζ(s) + ζr(s) = ζ(s) and hence another analytic continuation of the
Riemann zeta function:

ζ(s) = (1− r

rs
)−1ζr(s).

Taking for example ζ3(s), we see that ζ(s) can only have poles for s in 1 + 2π
log 3 Z i. So

for any pole s 6= 1 we have s = 1 + 2πi
log 2n = 1 + 2πi

log 3m, implying 2n = 3m, which is only
possible if m = n = 0.
Hence the only pole of ζ(s) is the one at s = 1. Note that for real s > 1 we have

1

s− 1
=

∫ ∞
1

1

xs
dx ≤ ζ(s) ≤ 1 +

1

s− 1
.

This implies
1 ≤ (s− 1)ζ(s) ≤ s for real s > 1.

Letting s go to 1 shows ζ(s) indeed has a simple pole at s = 1 with residue 1. �
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The preceding lemma is the easiest case of the class number formula, that we prove in
the next section in Theorem 4.5. The theorem will in fact follow quickly from the work
we have done so far. Its proof uses the following theorem along with the main theorem
of the previous chapter. It is no coincidence the O-notation is turning up again!

Theorem 4.4. Let {an} be a sequence in C with partial sums An. Let 0 ≤ σ1 < 1, and
assume there is a ρ ∈ C such that

An = ρn+O(nσ1) as n→∞.

Then the function

f(s) =

∞∑
n=1

an/n
s,

defined by the Dirichlet series on {s ∈ C : Re(s) > 1 has an analytic continuation to the
s ∈ C with Re(s) > σ1, except for a simple pole at s = 1 with residue ρ.

Proof. Apply Lemma 4.2 to the Dirichlet series f(s) − ρζ(s) to see it is analytic on
Re(s) > σ1. Then use the previous lemma to see f(s) = (f(s) − ρζ(s)) + ρζ(s) itself is
analytic on Re(s) > σ1 except for a pole at s = 1 with residue equal to ρ. �

4.2 Zeta functions and L-series

Throughout, let K be a number field and N = [K : Q].

Zeta functions

We have seen the Riemann zeta function in the previous section. One of the main reasons
we are interested in it is because it allows for a vast generalization: it turns out every
number field has a zeta function associated to it!
For the number field K, it is given by the (Dirichlet) series

ζK(s) =
∑
a

1

Nas
,

where we sum over all non-zero ideals of the ring of integers of K. We call it the
Dedekind zeta function of K. Note that the Dedekind zeta function of Q is the Riemann
zeta function.
We are ready to state and prove the class number formula, which is an important result
in its own right that gives an explicit formula for the residue of ζK(s) at s = 1. For the
purposes of proving Chebotarev’s Density Theorem, however, we note that we do not
need the exact value of this residue, but only the fact that ζK(s) is analytic for s ∈ C
with Re(s) > 1− 1/N with the exception of a single pole at s = 1 that is simple.
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Theorem 4.5 (Class number formula). The Dedekind zeta function ζK(s) is analytic
for s ∈ C with Re(s) > 1− 1/N , except for a single simple pole at s = 1 whose residue
is given by

2r1+r2πr2hR

w
√
|∆K |

,

where r1 is the number of real embeddings of K and r2 is the number of complex em-
beddings up to conjugation, h is the class number of K, R the regulator, and w is the
number of roots of unity of K.

Proof. For some coefficients a1, a2, . . . we can write ζK(s) =
∑
an/n

s. The partial sum
An of the coefficients equals the number of non-zero ideals of OK of norm less than or
equal to n. Hence, by Theorem 3.5,

|An| =
∑

C∈I/P

Z(n;C) =
2r1+r2πr2hR

w
√
|∆K |

n+O(n1−1/N ).

Theorem 4.4 finishes the proof. �

The Dedekind zeta function has another well-known description given as a formal
product, called the Euler product ∏

p

1

1− 1

Nps

,

ranging over all non-zero prime ideals.
To see it indeed describes ζK(s) we can take the logarithm of the formal product to
obtain ∑

p

− log(1−Nps) =
∑
m,p

1

mNpms
,

using the expansion log(1− x) =
∑

n−xn/n for |x| < 1.
If Re(s) = σ > 1 this sum is dominated by∑

m,p

N

mpmσ
<
∑
m,p

N

pmσ
< Nζ(σ) <∞,

where we sum over all rational prime numbers p.
Hence the logarithm of the product converges uniformly on {s ∈ C : Re(s) > 1} by
the Weierstraß M-test, and it is thus analytic on {s ∈ C : Re(s) > 1} (again by
[9, thm. III.1.3]). So when we exponentiate it again we get the product expression back,
which apparently converges. Multiplying out yields∏

p

1

1− 1

Nps

=
∏
p

(
1 + 1/Nps + 1/Np2s + · · ·

)
=
∑
a

1

Nas
= ζK(s),
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which follows from multiplicativity of the norm map and the unique prime factorization
of ideals in OK .

The logarithm of the Dedekind zeta function is of utmost importance in defining the
density of sets of prime ideals in the next chapter. Especially the fact that it has a pole
in s = 1 is crucial. We have∑

m≥2,p

1

mNpm
<
∑
p,m

N

p2m
+
∑
p,m

N

p2m+1
<∞.

Hence only ∑
p

1

Nps

contributes to the pole of log ζK at s = 1. In fact, using a similar argument, only the
primes p of absolute degree 1 contribute to the pole: the other primes have norm equal to
a perfect power of a rational prime, so the reciprocals of those norms do not contribute
to the pole.
Let us write f ∼ g if f and g differ (additively) by a function that is analytic at s = 1.
From the discussion above it then follows that

log ζK(s) ∼
∑
p

1

Nps
∼

∑
degQ p=1

1

Nps
.

Because ζK(s) has a simple pole at s = 1 we have that log
(
(s−1)ζK

)
is analytic around

s = 1 and thus

log
1

s− 1
∼ log ζK(s).

Later we will gratefully use the fact that all logarithms of Dedekind zeta functions differ
from each other by functions that are analytic around 1.

L-series

Another interesting class of functions are the so-called L-series. They are similar to the
Dedekind zeta functions, but now we plug in some character of the ideal class group,
or more generally, of I(c)/Pc for some cycle c of K. Let χ : I(c)/Pc → C∗ be such a
character. Then we define

Lc(s, χ) =
∏
p-c

(
1− χ(p)

Nps

)−1
,

where by χ(p) we mean χ(p), p being the class of p in I(c)/Pc.
Just as with the zeta functions, we also have

Lc(s, χ) =
∑
a-c

χ(a)

Nas
,
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using the multiplicativity of χ.
If χ and c are trivial we obtain the Dedekind zeta function ζK(s). However, when χ is
non-trivial Lc(s, χ) has no pole at s = 1, contrary to the Dedekind zeta functions.

Theorem 4.6. If χ 6= 1 is a character of I(c)/Pc, the Dirichlet series representation for
Lc(s, χ) is convergent for Re(s) > 1− 1/N .

Proof. Let B ∈ I(c)/Pc be such that χ(B) 6= 1, then

χ(B)
∑

A∈I(c)/Pc

χ(A) = χ(B)
∑

A∈I(c)/Pc

χ(B−1A) =
∑

A∈I(c)/Pc

χ(A),

from which we conclude that
∑

A∈I(c)/Pc
χ(A) = 0.

Theorem 3.5 tells us all classes in A ∈ I(c)/Pc contain, for some ρ independent of A,
ρn+O(n1−1/N ) ideals of norm less than n as n→∞. So if we write Lc(s, χ) =

∑
an/n

s,
with partial sums of the coefficients An, we obtain

An = ρ
∑

A∈I(c)/Pc

χ(A) +O(n1−1/N ) = O(n1−1/N ) as n→∞.

The theorem follows by an application of Theorem 4.4. �
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5 Density of ideals

5.1 The Dirichlet density

From the preceding chapter we collect the following result:

Lemma 5.1. For every number field K we have

log
1

s− 1
∼ log ζK(s) ∼

∑
p

1

Nps
∼

∑
degQ p=1

1

Nps
as s ↓ 1.

It leads to a natural definition of the density of a subset of prime ideals: the Dirichlet
density.

Definition (Dirichlet density). Let K be a number field and A a subset of the set of all
non-zero prime ideals of OK . Then we define the (Dirichlet) density of A as

lim
s↓1

∑
p∈A

1

Nps

log
1

s− 1

,

if this limit exists.

A more intuitive notion of density is called “natural density” and is defined by

lim
n→∞

#{p ∈ A : Np ≤ n}
#{p : Np ≤ n}

.

It turns out that if the natural density exists, then the Dirichlet density exists as well
and must be equal to it [10, p. 118–120]. However, the converse does not necessarily
hold: there are (pathological) cases of sets of primes that have a Dirichlet density, but
not a natural density [11, p. 76].
We will only work with the Dirichlet density, and shall therefore often omit the “Dirich-
let” part when refering to the Dirichlet density.
Finally, we will adopt a convention common in other parts of mathematics: when all
prime ideals of the ring of integers of some number field satisfy a certain property, ex-
cept for those in a set of density 0, we will say that almost all prime ideals satisfy said
property.
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5.2 Arithmetic progressions and cyclotomic extensions

When a and m are coprime rational integers, Dirichlet’s Theorem on Arithmetic Pro-
gressions states that there are infinitely many primes in the arithmetic progression

a, a+m, a+ 2m, a+ 3m, a+ 4m, a+ 5m, . . . .

An even stronger result says the density of these primes exists and equals 1/ϕ(m). This
result follows from taking K = Q in the following theorem (cf. the “Universal Norm
Index Inequality” and the corollary to Theorem 8 of Chapter VIII of [6]).

Theorem 5.2. Let K(ζm)/K be a cyclotomic extension of number fields, where ζm is
an m’th primitive root of unity. Let b ∈ G = Gal(K(ζm)/K) ⊂ (Z /mZ)∗ and let Sb be
the set of unramified prime ideals p of K above which there is prime P ⊂ OK(ζm) with
Frobenius element (P,K(ζm)/K) = b. Then

Sb = {p ⊂ OK : p is unramified in K(ζm) and Np = b mod m}.

Moreover, Sb has a density, equal to

lim
s↓1

∑
Np=b mod m

1

Nps

log
1

s− 1

=
1

[K(ζm) : K]
.

Proof. Let c be a cycle of K containing all real valuations, the ideal (m), and all primes
of K that ramify in K(ζm) (and no other ideals). This means the prime ideals of K that
are coprime to c are unramified in K(ζm).
Let p be a prime of K that is unramified in K(ζm) and let P ⊂ OK(ζm) be a prime above
it. Looking at the residue class fields, we see the Frobenius element (P,K(ζm)/K)
(acting on OK(ζm)/P) sends ζm ∈ OK(ζm)/P to ζNp

m , which means (P,K(ζm)/K) =
Np ∈ (Z /mZ)∗. This proves the first statement that

Sb = {p ⊂ OK : p is unramified in K(ζm) and Np = b mod m}.

The ideals in Pc are of the form (a) with a = 1 mod∗ c, which implies a = 1 mod m
and σ(a) > 0 for every real embedding σ. We have NK/Q(a) > 0, as the norm of a
is the product of its Galois conjugates and in this product, by construction, every real
conjugate is positive and of course the non-real conjugates can be paired with their
complex conjugates. The congruence a′ = 1 mod m also holds for the Galois conjugates
a′ of a, and hence NK/Q(a) = 1 mod m. Thus N(a) = |NK/Q(a)| = 1 mod m.
As a result, the morphism I(c)→ G : a 7→ (Na mod m) factors through I(c)/Pc. In this
way we can view characters of G as characters of I(c)/Pc. We will denote the set of such
characters of I(c)/Pc by X.
Let χ ∈ X be a non-trivial character. By Theorem 4.6 Lc(s, χ) is analytic around 1. We
shall see in a moment that Lc(1, χ) 6= 0.
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Write m(χ) for the order of the zero of Lc(s, χ) in s = 1. So m(χ) ≥ 0. Then for some
g analytic around 1 we have Lc(s, χ) = (s− 1)m(χ)g(s), hence

logLc(s, χ) ∼ m(χ) log(s− 1) ∼ −m(χ) log
1

s− 1
.

For s ∈ C with Re(s) > 1 and any character χ of G, we can view χ as an element of X
and write

logLc(s, χ) ∼
∑
a∈G

χ(a)
∑

Np=a mod m

1

Nps
. (5.1)

(Note that 5.1 holds even if the sum on the right hand side would range over some p | c,
as there are only finitely many p dividing c.)
Summing over all characters of G, we obtain(

1−
∑
χ 6=1

m(χ)
)

log
1

s− 1
∼ log ζK(s) +

∑
χ 6=1

logLc(s, χ) ∼
∑
χ

∑
a∈G

χ(a)
∑

Np=a mod m

1

Nps
.

Recall that the characters of G form a group (the dual group) of the same order as G,
and that the elements of G can be viewed as characters of the dual group [12, ex. 5.13].
Thus ∑

χ

∑
a∈G

χ(a)
∑

Np=a mod m

1

Nps
= #G

∑
Np=1 mod m

1

Nps
,

as
∑

χ χ(a) = 0, unless a is the identity element of G.
A prime ideal p of K splits completely in K(ζm) if and only if Np = 1 mod m, and in
that case it has precisely #G = [K(ζm) : K] primes P of K(ζm) above it. Recall only
primes P of absolute degree 1 contribute to the poles (and for these primes P∩K splits
completely in K(ζm)). Taking all this in consideration, we find(

1−
∑
χ 6=1

m(χ)
)

log
1

s− 1
∼ #G

∑
Np=1 mod m

1

Nps
&

∑
degQ P=1

1

NPs
∼ log

1

s− 1
,

where we consider only real values s > 1, let s → 1, and use the sign & to mean that
the right-hand side is less than or equal to the left-hand side plus some constant in a
neighbourhood of 1.
This shows m(χ) = 0 for all non-trivial χ.

Now let b ∈ G and multiply both sides of (5.1) by χ(b−1). Sum over all χ and use the
fact that logLc(s, χ) is analytic around 1 for non-trivial χ to get

log
1

s− 1
∼ log ζK(s) ∼

∑
a∈G

∑
χ

χ(ab−1)
∑

Np=a mod m

1

Nps
.

The sum over the χ yields 0 unless a = b mod m, and hence

log
1

s− 1
∼ #G

∑
Np=b mod m

1

Nps
.
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This finishes the proof, as

lim
s↓1

∑
Np=b mod m

1

Nps

log
1

s− 1

=
1

#G
=

1

[K(ζm) : K]
.

�

Corollary 5.3 (Dirichlet’s Theorem on Arithmetic Progressions). Let m be an integer
and a ∈ (Z /mZ)∗. Then the set Sa of prime numbers p ∈ Z for which a = p mod m
has a density, equal to

1

ϕ(m)
.

.

Proof. We have

lim
s↓1

∑
p=a mod m

1

ps

log
1

s− 1

= lim
s↓1

∑
N(p)=a mod m

1

Nps

log
1

s− 1

=
1

[K(ζm) : K]
,

by Theorem 5.2, where the first equality holds because N(p) = p and only finitely many
p ramify in Q(ζm). �

5.3 Chebotarev’s Density Theorem

Let L/K be a Galois extension of number fields and σ ∈ Gal(L/K). Write

Sσ = {p ⊂ OK : p is unramified in L and ∃P ⊂ OL above p with (P, L/K) = σ}.

In the case L/K cyclotomic we know from Theorem 5.2 that Sσ has a density equal to
1/[L : K]. For the general case it is Chebotarev’s Density Theorem that states that
Sσ has a density, and the theorem also gives its value, which might be different from
1/[L : K].
Suppose p ∈ Sσ and that P ⊂ OL lies above p and (P, L/K) = σ. Then for any
τ ∈ Gal(L/K) we have (τP, L/K) = τστ−1. So we see that

Sσ = Sτστ−1 .

Hence, supposing C ⊂ Gal(L/K) is the conjugacy class of σ, it is not be ambiguous to
write SC := Sσ. We will introduce some convenient notation for the densities we are
interested in.
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Definition (The (upper and lower) density of SC). For a Galois extension of number
fields L/K, a conjugacy class C ⊂ Gal(L/K), and

SC = {p ⊂ OK : p is unramified in L and ∃P ⊂ OL above p with (P, L/K) ∈ C},

we define, respectively, the upper and lower density of SC as

dsup(L/K,C) = lim sup
s↓1

∑
p∈SC

1

Nps

log
1

s− 1

and dinf(L/K,C) = lim inf
s↓1

∑
p∈SC

1

Nps

log
1

s− 1

,

and in the case those values are equal we let

d(L/K,C) := lim
s↓1

∑
p∈SC

1

Nps

log
1

s− 1

denote the density of SC .

Now we state Chebotarev’s Density Theorem.

Theorem 5.4 (Chebotarev). Let L/K be Galois extension of number fields with group
G, and let C be a conjugacy class of G. Then the density d(L/K,C) exists and equals
#C/#G.

If σ is an element of C ⊂ G := Gal(L/K), then L is an abelian extension of the field of
invariants Z := {x ∈ L : σx = x} with group Gal(L/Z) = 〈σ〉. The following counting
argument due to Deuring [13] shows we can reduce Chebotarev’s Density Theorem to
the case of an abelian extension.

Lemma 5.5 (Deuring). If d(L/Z, {σ}) = 1/[L : Z], then d(L/K,C) = #C/#G.

Proof. Let SL,σ be the set of primes P of L (unramified over K) with (P, L/K) = σ.
Next, denote by S the set of primes p of K for which there is a P ∈ SL,σ dividing it (i.e.
the set whose density we want to know).
Finally, let SZ be the set of primes q of Z for which there is a P | q of L with (P, L/Z) = σ
and degK(q) = 1.
We claim

lim
s↓1

∑
p∈S

1

Nps∑
q∈SZ

1

Nqs

=
#C[L : Z]

#G
. (5.2)

To see this, note that above every q ∈ SZ there lies exactly one P ∈ SL,σ: the Galois
group 〈σ〉 acts transitively on the primes above q, but also σ(P) = P for such q. Con-
versely, if P ∈ SL,σ it divides some non-zero prime q of Z, and as the Frobenius element
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σ of P is the identity on Z, it follows that degZ(P) = #〈σ〉 = degK(P), which implies
degK(q) = 1, and hence q ∈ SZ . This gives a bijection between SZ and SL,σ.
For a fixed p ∈ S the number of P above p such that σ = (P, L/K) equals #Cσ/#GP,
where Cσ is the subgroup of G of elements commuting with σ and GP is the decomposi-
tion group of P. As #Cσ = #G/#C and #GP = #〈σ〉 = [L : Z], this number is equal
to

#G

#C[L : Z]
.

For every P | p with σ = (P, L/K) there is a unique q ∈ SZ with P | q | p, moreover
Np = Nq. Hence it follows from the observations above that for any s > 1

#G

#C[L : Z]

∑
p∈S

1

Nps
=
∑
q∈SZ

1

Nqs
,

and thus 5.2 is true.
Now, because only primes of Z of degree 1 over K contribute to the poles (as in fact
only those of absolute degree 1 contribute to the poles), we see

1

[L : Z]
= d(L/Z, {σ}) = lim

s↓1

∑
q∈SZ

1

Nqs

log
1

s− 1

.

This concludes the proof, as

d(L/K,C) = lim
s↓1

∑
p∈S

1

Nps

log
1

s− 1

= lim
s↓1

∑
p∈S

1

Nps∑
q∈SZ

1

Nqs

·

∑
q∈SZ

1

Nqs

log
1

s− 1

=
#C

#G
.

�

While the original proof by Chebotarev did not, most modern proofs of his density
theorem rely on class field theory. Stevenhagen and Lenstra, however, discuss a proof
that does not [14]. It is this proof that is presented below.

Theorem 5.4 (Chebotarev). Let L/K be Galois extension of number fields with group
G, and let C be a conjugacy class of G. Then the density d(L/K,C) exists and equals
#C/#G.

Proof. Assume L 6= K, otherwise we are done. By the preceding lemma we can also
assume L/K is abelian. So C = {σ} for some σ ∈ G.
For a rational prime p, let ζp be some p’th root of unity. Choose an M such that for all
p > M we have L ∩Q(ζp) = Q.
Let p > M and denote the Galois group of K(ζp)/K by H ∼= (Z /pZ)∗. Then the Galois
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group of L(ζp)/K can be identified with G×H.
Now, if a prime p of K has a prime P of L(ζp) above it with Frobenius element (σ, τ) ∈
G×H, then P ∩ L has Frobenius element σ ∈ G. Hence

dinf(L/K, {σ}) ≥
∑
τ∈H

dinf(L(ζp)/K, {(σ, τ)}).

Write n := [L : K] and fix (σ, τ) ∈ G×H. When n divides the order of τ , the subgroups
〈(σ, τ)〉 and G × {1} of G ×H intersect trivially. It follows that the field of invariants
F = {x ∈ L(ζp) : (σ, τ)(x) = x} satisfies F (ζp) = L(ζp), such that L(ζp)/F is cyclotomic.
Still supposing n divides the order of τ , by Theorem 5.2 we have

d(L(ζp)/F, {(σ, τ)}) =
1

[L(ζp) : F ]
,

and thus by Lemma 5.5

d(L(ζp)/K, {(σ, τ)}) =
1

[L(ζp) : F ][F : K]
=

1

#G#H
.

Writing Hn for the set of τ ∈ H whose order is divisible by n, the above considerations
yield

dinf(L/K, {σ}) ≥
#Hn

#G#H
.

Suppose k > 0 and p = 1 mod nk. Then H ∼= Z /nkrZ for some r ∈ Z>0. Suppose
n = pe11 · · · p

e`
` with the pi distinct prime numbers and ei > 0. Then, if we consider for

each i the map

ϕi : H → H : h 7→ nkr

p
(k−1)ei
i

· h

of multiplication by nkrp
(1−k)ei
i , we see that # kerϕi = nkrp

(1−k)ei
i and that every ele-

ment of H whose order is not divisible by peii lies in kerϕi. It follows that

#Hn

#H
≥
nkr −

∑
i # kerϕi

nkr
=
nkr −

∑
i n

krp
(1−k)ei
i

nkr
= 1−

∑
i

1

p
(k−1)ei
i

,

which comes arbitrarily close to 1 for large k. Dirichlet’s Theorem on Arithmetic Pro-
gressions tells us there are (infinitely many) primes p > M satisfying the congruence
p = 1 mod nk, for every k.
So we obtain

dinf(L/K, {σ}) ≥ 1/#G.

This is true for every σ ∈ G. We claim that dsup(L/K, {σ}) ≤ 1/#G for every σ: for
suppose this is not true for, say, σ1 ∈ G, then

1 = lim sup
s↓1

∑
p⊂OK

1

Nps

log
1

s− 1

≥ dsup(L/K, {σ1}) +
∑

σ∈G\{σ1}

dinf(L/K, {σ}) > 1,
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which is a contradiction.
So the upper and lower densities dsup and dinf coincide and hence the Dirichlet densities
exist for all σ ∈ G and equal

d(L/K, {σ}) = 1/#G.

�
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6 Chebotarev’s Density Theorem for
infinite Galois extensions

Let K be a number field and L/K a Galois extension of K with group G. Even if the
extension L/K is infinite we still turn out to have a notion of Frobenius elements in G,
as we will see in Section 6.2. This allows us to formulate an analogon of Chebotarev’s
Density Theorem.
However, suppose that G is infinite and X ⊂ G is closed under conjugation, then the
density of the primes p ⊂ OK above which there is a prime in OL with Frobenius element
in X cannot possibly be #X/#G – as in the finite case of Chebotarev’s Density Theorem
– as this expression has no meaning, because G (and possibly X) is infinite.
So in order to formulate Chebotarev’s Density Theorem in the infinite setting we need
something else. Here the Haar measure comes into play: we wil be able to construct a
measure h on the Galois group G with h(G) = 1, called the Haar measure. When we
have this measure, we wil see that the density of the primes in OK above which there is
a prime with Frobenius in X is equal to h(X).
The following section deals with the construction of the Haar measure.

6.1 The Haar measure

We start by introducing some measure theoretic definitions which will allow us to state
the rather technical result from Carathéodory about when certain maps (pre-measures)
can be extended to measures.

Definition (Semi-ring on a set). Let X be a set. Then S ⊂ P(X) is said to be a semi-
ring on X if S contains the empty set, is closed under intersection, and if it holds that
if S, T ∈ S, then there are finitely many disjoint S1, . . . , Sn ∈ S such that S \T =

⋃
i Si.

Definition (Pre-measure on a semi-ring). Let X be a set and S a semi-ring on X. Then
µ : S → [0,∞) is called a pre-measure (on S) if µ(∅) = 0 and

µ
( ⋃
i∈N

Si
)

=
∑
i∈N

µ(Si),

whenever S1, S2, . . . is a countable sequence of disjoint sets in S whose union is also in
S.

Carathéodory’s Extension Theorem shows that any pre-measure on a semi-ring S on
some set X can be extended to a measure on the σ-algebra generated by S (i.e. the
smallest σ-algebra containing S).
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Theorem 6.1 (Carathéodory’s Extension Theorem). Let X be a set and S a semi-ring
on X. If µ : S → [0,∞) is a pre-measure, then µ can be extended to a measure on the
σ-algebra generated by S. This extension is unique if µ is defined on X and µ(X) <∞.

Proof. See [15, thm. 6.1]. �

In a profinite group G there is a fundamental system of neighbourhoods of the identity
consisting of open subgroups Gi of finite index in G, we will call such a system of Gi a
fundamental system of G. Because a profinite group is a topological group, the set of all
a+Gi with a ∈ G forms a basis for the topology on G. Carathéodory’s theorem allows
us to construct a Haar measure on profinite groups that have a fundamental system that
is countable.

Theorem 6.2. Let G be a profinite group with countable fundamental system {Gi}i∈I ,
indexed by a directed poset I. Then the map

h : T (G)→ [0, 1] : U 7→ sup
i∈I

∑
aGi⊂U

1

[G : Gi]
,

where T (G) is the set of opens of G, can be uniquely extended to a left-translation
invariant measure on the Borel σ-algebra of G (i.e. the σ-algebra generated by the open
sets).

Proof. Consider the set

S = {
n⋃
j=1

ajGi : a1, . . . , an ∈ G, i ∈ I} ∪ {∅}

of finite unions of left-cosets of subgroups in {Gi}i∈I , containing in addition the empty
set. Note that the elements of S are compact and open, and that they form a basis for
the topology of G.
Define h̃ : S → [0, 1] by

h̃ :
n⊔
j=1

ajGi 7→
n

[G : Gi]
and ∅ 7→ 0.

This is well-defined: if A =
⊔n
j=1 ajGi =

⊔m
k=1 bkG` we can suppose without loss of

generality that G` ⊂ Gj (because the system is directed), and we find

n

[G : Gi]
=
∑

aGi⊂A

1

[G : Gi]
=
∑

aGi⊂A

∑
bG`⊂aGi

1

[G : G`]
=

m

[G : G`]
.

This shows h̃ is well-defined. One can show in a similar way that h̃(AtB) = h̃(A)+h̃(B),
which means h̃ respects finite disjoint unions.
Suppose that

⊔
i∈NAi ∈ S for certain A1, A2, · · · ∈ S is non-empty, then by compact-

ness only finitely many of the Ai are non-empty. Thus it follows that h̃(
⊔
i∈NAi) =
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∑
i∈N h̃(Ai), as it is in fact a finite union. By Theorem 6.1 the map h̃ can be uniquely

extended to a measure h on the σ-algebra generated by S. As I is countable, it follows
that every open subset G is a countable union of elements of S, hence the σ-algebra
generated by S is in fact the Borel σ-algebra of G.
From the definition of h̃ it follows immediately that h̃ is left-translation invariant. The
uniqueness of the extension h then implies that the two measures h(−) and h(g · −) are
actually the same, for any g ∈ G. This shows h is left-translation invariant.
It remains to prove h is given by

U 7→ sup
i∈I

∑
aGi⊂U

1

[G : Gi]

on the opens U of G.
The fact that h is a measure implies h(U) ≥ supi∈I

∑
aGi⊂U

1
[G:Gi]

. Now, because I is

countable we can find a chain C ⊂ I that is order isomorphic to (a subset of) N such
that for all i ∈ I there is a c ∈ C with i ≤ c (this property is called cofinality). Viewing
C as a suborder of N we can define for each n ∈ N the measurable sets

A0 = ∅ and An+1 =


( ⋃
aGn⊂U

aGn

)
\An, if n ∈ C,

An, otherwise.

Then

h(U) = h(
⊔
i∈N

Ai) =
∑
i∈N

h(Ai) = sup
n∈C

n+1∑
i=1

h(Ai) = sup
n∈C

h
( ⋃
aGn⊂U

aGn
)
≤ sup

i∈I

∑
aGi⊂U

1

[G : Gi]
.

�

Corollary 6.3. Let K be a number field and suppose L/K is a Galois extension with
profinite group G. Then there exists a unique left-translation invariant measure h satis-
fying

h : T (G)→ [0, 1] : U 7→ sup
N

∑
aN⊂U

1

[G : N ]
,

where T (G) is the set of opens of G and the supremum is taken over the closed normal
subgroups N of finite index (i.e. those corresponding to finite subextensions E/K of
L/K).

Proof. The Galois group G is the projective limit of the Galois groups of finite Galois
subextensions F/K [16, thm. 2.2]. There are countably many polynomials in K[X], so
there are at most countably many finite Galois subextensions F/K.
This means G is a profinite group with a countable fundamental system. The statement
then follows from Theorem 6.2. �
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6.2 The infinite case of Chebotarev’s Density Theorem

Let K be a number field and let L/K be Galois with profinite group G. Suppose
L1 ⊂ L2 ⊂ . . . is an ascending chain of subextensions of L/K that are finite and Galois
over K with L =

⋃
i Li.

We call the integral closure of Z in L the ring of integers of L and denote it by OL.
Note that in the case L/K is infinite OL might not have unique factorization into prime
ideals: for example, if L is the normal closure of Q( n

√
2: n ∈ Z>0) we have t2 = t for the

non-zero OL-ideal t = ( n
√

2: n ∈ Z>0) generated by all roots of 2.
Let P be a non-zero prime ideal of the ring of integers OL of L. Then one can verify that
P is a maximal ideal, and writing p = K ∩P and pi = Li ∩P we obtain an ascending
chain of prime ideals that lie in OK and OLi , respectively.
We will say that p does not ramify in L if p does not ramify in any Li – note that this
definition does not depend on the choice of Li. Equivalently, p does not ramify in L if
and only if the only nilpotent element of OL/P is 0.
Suppose p does not ramify in L. For each i we will then get embeddings

Gal
(
(OLi/pi)/(OK/p)

)
↪→ Gal(Li/K)

sending the Frobenius automorphism x 7→ xNp to the Frobenius element (pi, Li/K). We
have commutative diagrams

Gal
(
(OLi+1/pi+1)/(OK/p)

)
Gal(Li+1/K)

Gal
(
(OLi/pi)/(OK/p)

)
Gal(Li/K)

for each i ∈ N, where the downward arrows are the quotient maps. This induces an
embedding [17, prop. 10.2]

Gal
(
(OL/P)/(OK/p)

) ∼= lim←−
i

Gal
(
(OLi/pi)/(OK/p)

)
↪→ lim←−

i

Gal(Li/K) ∼= G.

(Note that the hence defined embedding Gal
(
(OL/P)/(OK/p)

)
↪→ G is independent of

the choice of the Li.) Thus we can define the Frobenius element (P, L/K) of P as the
image of x 7→ xNp in Gal(L/K) through the embedding Gal

(
(OL/P)/(OK/p)

)
↪→ G

described above. Note that this definition of the Frobenius element agrees with the
definition we earlier gave in the case L/K is finite.
We could have defined the Frobenius element (P, L/K) in a similar way as when we
defined them in the case of an extension of number fields. Namely, the fact that G acts
transitively on the primes in OLi above p, means G also acts transitively on the primes in
OL above p. Moreover, we can again define the decomposition group GP as the stabilizer
of P to find out GP

∼= Gal
(
(OL/P)/(OK/p)

)
(since we assumed that p does not ramify

in L). Then the Frobenius element would be the element in GP corresponding to the
Frobenius automorphism in Gal

(
(OL/P)/(OK/p)

)
. We leave it to the reader to verify
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that this definition of the Frobenius element is equivalent to the one we gave.
Given a subset X ⊂ G that is closed under conjugation, we can again define, respectively,
the upper and lower densities

dsup(L/K,X) = lim sup
s↓1

∑
p∈SX

1

Nps

log
1

s− 1

and dinf(L/K,X) = lim inf
s↓1

∑
p∈SX

1

Nps

log
1

s− 1

,

where

SX = {p ⊂ OK : p is unramified in L and ∃P ⊂ OL above p with (P, L/K) ∈ X}.

If the upper and lower densities are equal, we denote their value by d(L/K,C).
Now we are ready to formulate the version of Chebotarev’s Density Theorem that also
covers the infinite case (cf. [18, I-8, cor. 2]). The theorem requires one additional
condition on L/K to those considered above: the primes of the base field K that ramify
in L should have density 0.

Theorem 6.4 (Chebotarev’s Density Theorem for infinite extensions). Let K be a num-
ber field. Suppose L/K is Galois with group G and let X ⊂ G be closed under conjuga-
tion. Suppose the set of primes p of K that ramify in L has a density, equal to 0. If h
is the Haar measure as obtained in Corollary 6.3, then

h
(
X
)
≥ dsup(L/K,X) ≥ dinf(L/K,X) ≥ h(X◦),

where X denotes the closure and X◦ the interior of X. In particular, if the boundary
∂X of X has measure 0, then SX has a density, equal to d(L/K,X) = h(X).

Proof. Let Li ⊂ L for i ∈ N be finite Galois over K as in the discussion above. Define,
for each i, X+

i ⊂ Gal(Li/K) as the image of X through the quotient map

Gal(L/K)� G/Gal(L/Li) ∼= Gal(Li/K).

(The inclusion Gal(L/Li) ⊂ G and the isomorphism G/Gal(L/Li) ∼= Gal(Li/K) fol-
low from the Main Theorem of Galois Theory, which also holds in the infinite case
[16, thm. 2.3].)
For each i define the set of primes of OK

S+
i = {p ⊂ OK : p is unramified in Li and ∃pi ⊂ OLi with pi | p and (pi, Li/K) ∈ X+

i }.

Note that S+
i ⊃ S

+
i+1 ⊃ SX for all i. So for all i and all s ∈ (1, 2) we have∑

p∈S+
i

1

Nps

log
1

s− 1

≥

∑
p∈SX

1

Nps

log
1

s− 1

.
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Taking the limit s→ 1 first and then letting i→∞ we see

lim inf
i→∞

d(Li/K,X
+
i ) ≥ dsup(L/K,X).

By Chebotarev’s Density Theorem and the way h behaves on opens we have

lim inf
i→∞

d(Li/K,X
+
i ) = lim inf

i→∞

#X+
i

[Li : K]
= 1− lim sup

i→∞

[Li : K]−#X+
i

[Li : K]
= 1− h

(
(G \X)◦

)
,

which is equal to h
(
X
)
. So h

(
X
)
≥ dsup(L/K,X).

In order to bound the lower density from below, define, for each i, X−i ⊂ Gal(Li/K) as
the image of ⋃

σ∈G:
σGal(L/Li)⊂X

σGal(L/Li)

through the quotient map Gal(L/K)� Gal(Li/K).
Now define

S−i = {p ⊂ OK : p is unramified in Li and ∃pi ⊂ OLi with pi | p and (pi, Li/K) ∈ X−i }

and note that ∑
p∈SX

1

Nps
+

∑
p⊂OK

ramified in L

1

Nps

log
1

s− 1

≥

∑
p∈S−i

1

Nps

log
1

s− 1

for all i and s ∈ (1, 2). Because the primes that ramify in L have density 0, when taking
the limit of s to 1 we see

dinf(L/K,X) ≥ d(Li/K, S
−
i ) =

#X−i
[Li : K]

.

Taking the limit i → ∞ it follows from Chebotarev’s Density Theorem and properties
of h that

dinf(L/K,X) ≥ lim sup
i→∞

#X−i
[Li : K]

= h(X◦).

We see
h
(
X
)
≥ dsup(L/K,X) ≥ dinf(L/K,X) ≥ h(X◦).

If h(X)− h(X◦) = h(∂X) = 0, we see d(L/K,X) is defined and equals h(X). �

Corollary 6.5. Let K be a number field and suppose L/K is Galois with group G.
Suppose the set of primes p of K that ramify in L has a density, equal to 0. Then the
set of elements in G that are Frobenius elements of some prime P ⊂ OL lies dense in
G.
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7 Some applications

In the previous chapter we have seen that the finite Chebotarev’s Density Theorem can
be used to prove an infinite version. Here we will present some elementary applications
of the finite version. The first application was mentioned in the introductory chapter.
We start with a lemma.

Lemma 7.1. Let L = K(α1, . . . , αn)/K be an extension of number fields with α1, . . . , αn
integral over OK . Then for all but finitely many primes P ⊂ OL one has that the natural
map

ψ : OK [α1, . . . , αn]/
(
P ∩ OK [α1, . . . , αn]

)
→ OL/P

is an isomorphism.

Proof. The ring OK [α1, . . . , αn], being a free abelian group of the same rank as OL, has
finite index in OL. If ψ is not surjective, its image has non-trivial index in OL/P and
this index must divide [OL : OK [α1, . . . , αn]]. At the same time, the index of the image
should be divisible by P in that case, because P | [OL/P : Imψ].
This shows it is only possible for the map not to be an isomorphism in the case

P | [OL : OK [α1, . . . , αn]].

�

7.1 On the density of rational primes p for which a is an
n’th power mod p

In Chapter 4 we saw that Dirichlet’s Theorem on Arithmetic Progressions is a special
case of Chebotarev’s Density Theorem. Given an integer a ∈ Z we can ask for the
density of prime numbers p ∈ Z with the property that a = � mod p. Using the law
of quadratic reciprocity one sees that a being a square mod p happens if and only if p
satisfies certain congruences mod 4|a|. One can then use Dirichlet’s theorem to compute
the density of the primes p for which a = � mod p.
Chebotarev’s Density Theorem allows us to do this for arbitrary n’th powers, instead
of merely for n = 2. In order to do this, one needs to compute the Galois group of
Q( n
√
a, ζn)/Q. With a few conditions on a we know what this group looks like.
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Theorem 7.2. Let a ∈ Z and n ∈ Z>0 and suppose a is not a d’th power in Z for all
d | n with d 6= 1. Suppose as well that Q(ζn) ∩Q( n

√
a) = Q, where ζn is a primitive n’th

root of unity. Then the set of rational primes p for which a is an n’th power mod p has
a density that is equal to

1

ϕ(n)

∑
u∈(Z /nZ)∗

1

gcd(u− 1, n)
.

In particular, when n is a prime number, this density is
n− 1

n
.

Proof. We begin by computing the Galois group G of Q(ζn, n
√
a)/Q. By our assumptions

Xn − a is irreducible in Q(ζn)[X]. Hence G has order nϕ(n).
Every σ ∈ G is determined by where it sends ζn and n

√
a to. So it is not ambiguous to

write σb,c for the element of G that sends ζn to ζbn and n
√
a to ζcn

n
√
a. Because for any

σb,c ∈ G we must have b ∈ (Z /nZ)∗ and c ∈ Z /nZ it follows from #G = nϕ(n) that
we have a bijective map to the affine group over Z /nZ

ψ : G→ Aff(Z /nZ) =
{(u t

0 1

)
: u ∈ (Z /nZ)∗, t ∈ Z /nZ

}
: σb,c 7→

(
b c
0 1

)
.

Note that σu,tσb,c(ζn) = ζubn and σu,tσb,c( n
√
a) = ζuc+tn

n
√
a, so σu,tσb,c = σub,uc+t, from

which it follows that ψ is an isomorphism of groups. Hence we can identify G and
Aff(Z /nZ).
By Lemma 7.1 for all but finitely many prime numbers p we have that the residue class
field extensions (OQ(ζn, n

√
a)/p)/Fp, for primes p ⊂ OQ(ζn, n

√
a) above p, are the same as

the extension Z[ζn, n
√
a]/
(
p ∩ Z[ζn, n

√
a]
)

of Fp.
So assume this is true for p, then we have that a is an n’th power mod p if and
only if there is some k ∈ Z such that the Frobenius automorphism fixes ζkn

n
√
a ∈

Z[ζn, n
√
a]/
(
p ∩ Z[ζn, n

√
a]
)
. If p lies above p and has Frobenius element

(p,Q(ζn,
n
√
a)/Q) =

(
u t
0 1

)
,

then ζkn
n
√
a ∈ Fp(ζn, n

√
a) is fixed if

ζkn
n
√
a =

(
u t
0 1

)
ζkn

n
√
a = ζuk+t

n
n
√
a,

which happens precisely if (u− 1)k + t = 0 mod n. In that case one has(
1 k
0 1

)−1(
u t
0 1

)(
1 k
0 1

)
=

(
1 −k
0 1

)(
u t
0 1

)(
1 k
0 1

)
=

(
u 0
0 1

)
,

and one has that the conjugacy class of (p,Q(ζn, n
√
a)/Q), which is that of

(
u 0
0 1

)
,

equals

Cu :=
{(1 −`

0 1

)(
u 0
0 1

)(
1 `
0 1

)
: ` ∈ Z /nZ

}
=
{(u (u− 1)`

0 1

)
: ` ∈ Z /nZ

}
.
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So
#Cu = #(u− 1)(Z /nZ) =

n

gcd(n, u− 1)
.

We conlude that for all but finitely many rational primes p we have that a is an n’th
power mod p if and only if the Frobenius elements of the primes above p belong to a Cu
for some u ∈ (Z /nZ)∗, and thus the density of those rational primes p is equal to

1

nϕ(n)

∑
u∈(Z /nZ)∗

n

gcd(n, u− 1)
=

1

ϕ(n)

∑
u∈(Z /nZ)∗

1

gcd(u− 1, n)
.

In case n is prime, this density is equal to

1

n− 1

∑
u∈(Z /nZ)∗

1

gcd(u− 1, n)
=

1

n− 1

(
1

gcd(0, n)
+
n−1∑
u=2

1

gcd(u− 1, n)

)

=
1

n− 1

( 1

n
+ n− 2

)
=
n− 1

n
.

�

7.2 What the splitting behaviour of primes says about the
extension

Given an extension of number fields L/K let Spl(L/K) denote the set of primes p ⊂ OK
that split completely in OL.
The following theorem can be found in the second edition of Lang’s Algebraic Number
Theory as a corollary to Chebotarev’s Density Theorem [19, p. 170].

Theorem 7.3. Let K be a number field and f ∈ OK [X] an irreducible polynomial. If f
has roots in OK/p for all primes p, except for those in a set of Dirichlet density 0, then
f has a root in K.

Proof. Let L be the splitting field of f over K and let G be its Galois group. Let α ∈ L
be a root of f and let H = Gal(L/K(α)) ⊂ G. Conjugates σHσ−1 have invariant field
K(σ(α)), so by assumption almost every prime P ⊂ OL has a Frobenius element in some
conjugate of H (only the primes P above p ⊂ OK for which f has no roots mod p and
those for which p | ∆(f) are excluded – in the latter case α and some conjugate α′ 6= α
of α might be the same mod P).
It follows that every element of G lies in some conjugate of H. Hence G =

⋃
σ∈G σHσ

−1.
If f would have degree 1, K(α) would be a proper field extension of K, and hence H
would be a proper subgroup of G. However, the number of conjugates of H is less
than or equal to [G : H] and each conjugate has #H elements, while in the union
G =

⋃
σ∈G σHσ

−1 the identity element occurs in each conjugate, which yields the con-
tradiction

#G < [G : H]#H = #G.

This shows f has degree 1 and a root in K. �
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We obtain the following corollary that could also have been proven by noting that the
density of the primes of K that split completely in a Galois extension of number fields
L/K is equal to 1/[L : K].

Corollary 7.4. Let L/K be a Galois extension of number fields and suppose all primes
of K split completely in L except for a set of density 0. Then L = K.

In Theorem 7.3 the assumption that f is irreducible is crucial: for example, the
polynomial (X2 + 1)(X2 + 5)(X2 − 5) ∈ Q[X] has no roots in Q, but it does have roots
in Fp for every rational prime p.
Furthermore, it is not true that if f is not irreducible modulo every prime p, that it is
not irreducible in K[X]: for this we have the counter example X4 + 1 ∈ Q[X], as it is
clearly not irreducible in F2[X] and for odd primes p it has a root in Fp2 , since then
8 | p2 − 1. (Alternatively, one can argue that since the Galois group of X4 + 1 over Q
does not have an element of order 4, there can be no Frobenius elements of order 4.)

Theorem 7.5. Let K be a number field and L1, L2 finite field extensions of K that are
contained in the same algebraic closure. If Spl(L1/K) and Spl(L2/K) differ by a set
that has density 0, then L1 and L2 have the same normal closure over K.

Proof. Let Ω1 and Ω2 be the normal closures of L1 and L2 in K, respectively. For
i ∈ {1, 2} we have Spl(Ωi/K) ⊂ Spl(Ωi/K) and for all but finitely many p ∈ Spl(Li/K)
we have p ∈ Spl(Ωi/K):1 let f ∈ OK [X] be the minimal polynomial over K of some
integral primitive element for Li/K and let α1, . . . , αn be its roots. If p ∈ Spl(Li/K)
and P ⊂ OΩi is a prime above p, then we have[

OK [α1, · · · , αn]/
(
P ∩ OK [α1, · · · , αn]

)
: OK/p

]
= 1.

So by Lemma 7.1, as Ωi = K(α1, . . . , αn), it indeed follows that all but finitely many
p ∈ Spl(Li/K) are elements of Spl(Ωi/K).
Hence Spl(Ω1/K) and Spl(Ω2) also differ by a set that has Dirichlet density 0. Thus
almost all primes p ∈ Spl(Ω1/K) split completely in the compositum Ω1Ω2, because, by
Lemma 7.1, for all but finitely many p ∈ Spl Ω1/K) we have that p splits completely in
Ω1Ω2 if some minimal polynomial f ∈ OK [X] of an (integral) primitive element for Ω2/K
splits into linear factors modulo p, and the latter is true for almost all p ∈ Spl Ω1/K).
In particular the primes P ⊂ OΩ1 of absolute degree 1 (almost all primes of OΩ1 have
this property!) lie above primes in Spl(Ω1/K), so almost all of them split completely in
Ω1Ω2. Hence it follows by Corollary 7.4 that Ω1 = Ω1Ω2.
Similarly, we find Ω2 = Ω1Ω2. �

1In fact one has Spl(Ωi/K) = Spl(Li/K), see [4, ch. 4, §9, ex. 4].
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8 Concluding remarks

We would like to begin by pointing out that, although introducing the generalized ideal
class groups in this thesis was very technically motivated, the generalized ideal class
groups (also known as “ray class groups”) occupy a central position within class field
theory. Therefore the reader should not worry about having learned an obsolete defini-
tion only to never think about it again after having finished the proof of Chebotarev’s
Density Theorem.
Furthermore, we mention that we have only touched upon the surface in the discussion
of the applications of the theorem. We considered including a chapter on the application
of the infinite version of Chebotarev’s theorem to the study of the Tate module of an
elliptic curve (the author intented to study [18] to this end). However, this was deemed
to shift the focus of the thesis too much away from Chebotarev’s theorem.
Regarding more elementary applications of (the finite version of) Chebotarev’s Density
Theorem, there seem to be many others as well: for one thing, the theorem could also
have been applied to more difficult polynomials than Xn − a.
A more spectacular kind of result that follows from the density theorem is that the
rational primes p for which the decimal expansion of 1/p has odd period length has a
density equal to 1/3. The proof can be found in [20]. Although the statement itself is
quite elementary, the proof in fact relies on a so-called “effective” form of Chebotarev’s
Density Theorem: an asymptotic formula à la Theorem 3.5 that gives the number of
prime ideals of bounded norm of a number field K for which the primes above have a
given Frobenius element (the primes above thus lying in some number field L that is
Galois over K). These effective forms are far from elementary and some even rely on
the Generalized Riemann Hypothesis [21, §2]. We did not touch upon effective forms of
the density theorem in this thesis, but we would like to point them out to the reader as
a domain worth further exploration.
Finally, on a more personal note, many thanks are due to Arno Kret: for his helpful and
pleasant guidance and for his excellent suggestion of writing a thesis on Chebotarev’s
Density Theorem.
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Populaire samenvatting

Vaak wordt van priemgetallen gedacht dat er totaal geen patronen in te ontdekken vallen.
We willen niet bestrijden dat hier mogelijk enige vorm van waarheid in schuilt, maar
zonder te specificeren wat er met “patronen” wordt bedoeld kan men er al gauw tegen
inbrengen dat er wel degelijk patronen te ontdekken zijn: zo is ieder priemgetal groter
dan 2 bijvoorbeeld oneven.
Afgezien van dit soort flauwe observaties, zijn er ook subtielere patronen: zo kan men
de “kans” bepalen dat een willekeurig priemgetal eindigt op een 1. Met wat rekenen ziet
men bijvoorbeeld al:

n
aantal priemgetallen

< n
aantal priemgetallen
< n eindigend op 1

percentage < n
eindigend op 1

10 4 0 00, 0000 . . .%
100 25 5 20, 0000 . . .%
1000 168 40 23, 8095 . . .%
10.000 1229 306 24, 8982 . . .%
100.000 9592 2387 24, 8853 . . .%
1000.000 78498 19617 24, 9904 . . .%
10.000.000 664579 166104 24, 9938 . . .%
100.000.000 5761455 1440298 24, 9988 . . .%
1000.000.000 50847534 12711386 24, 9990 . . .%

Dit suggereert dat de kans dat een priemgetal op een 1 eindigt 25% is. Dit wordt
natuurlijk uitgrekend met de computer, maar dan nog weet men het nooit: wie weet
komen er na de miljard wel helemaal geen priemgetallen meer die eindigen op een 1!
Het blijkt toch wel zo te zijn, en hoe meer priemgetallen men zelfs afgaat, hoe dichter
het percentage bij de 25% zal komen te liggen: dit is een gevolg van Dirichlets Stelling
over Rekenkundige Rijen.
Chebotarevs Dichtheidsstelling – het onderwerp van deze scriptie – is een generalisatie
van Dirichlets stelling. De dichtheidsstelling maakt het mogelijk een heel spectrum
aan kansen te berekenen. Zo kan men de “kans” berekenen dat voor een willekeurig
priemgetal p het getal 2 met een p-voud verschilt van een vijfde macht: deze kans blijkt
80% te zijn. Ook blijkt uit de dichtheidsstelling – al behandelen we dat niet in deze
scriptie – dat voor een derde van de priemgetallen p de decimale ontwikkeling van 1/p
een periode van oneven lengte heeft [20].
Onder enig voorbehoud spraken we net van “kans”, want eigenlijk gaat de stelling niet
over kansen maar over dichtheden. Om die dichtheden te kunnen definiëren heeft men
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de beroemde Riemann-zetafunctie

ζ(s) :=
∞∑
n=1

1

ns

nodig – beroemd van de tot op heden onopgehelderde Riemannhypothese. Naast de
Riemann-zetafunctie moet men wat meetkunde en algebräısche getaltheorie doen, en
dan kan men de mouwen opstropen om Chebotarevs Dichtheidsstelling te bewijzen!
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